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Quasilinear regime and rare-event tails of decaying Burgers turbulence
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We study the decaying Burgers dynamics in d dimensions for random Gaussian initial conditions. We focus
on power-law initial energy spectra, such that the system shows a self-similar evolution. This is the case of
interest for the “adhesion model” in cosmology and a standard framework for “decaying Burgers turbulence.”
We briefly describe how the system can be studied through perturbative expansions at early time or large scale
(quasilinear regime). Next, we develop a saddle-point method, based on spherical instantons, that allows to
obtain the asymptotic probability distributions P(7,) and P(0,), of the density and velocity increment over
spherical cells, reached in the quasilinear regime. Finally, we show how this approach can be extended to take
into account the formation of shocks and we derive the rare-event tails of these probability distributions, at any
finite time and scale. This also gives the high-mass tail of the mass function of pointlike singularities (shocks

in the one dimensional case).
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I. INTRODUCTION

The Burgers equation [1-3], which describes the evolu-
tion of a compressible pressureless fluid, with a nonzero vis-
cosity, was first introduced as a simplified model of fluid
turbulence, as it shares the same hydrodynamical (advective)
nonlinearity and several conservation laws with the Navier-
Stokes equation. It also displays strong intermittency, asso-
ciated with anomalous scaling exponents for the velocity
structure functions, but this arises from the formation of
shocks (i.e., singular structures in the inviscid limit v— 0*)
where energy is dissipated, whereas the structures that ap-
pear in Navier-Stokes turbulence seem to be more varied and
less singular (because of pressure effects) [4]. Nevertheless,
due to its greater simplicity, it can actually be explicitly in-
tegrated through the Hopf-Cole transformation [5,6], the
Burgers dynamics retains much interest for hydrodynamical
studies, particularly as a useful benchmark for approximation
schemes [7]. On the other hand, the Burgers equation also
appears in many physical problems, such as the propagation
of nonlinear acoustic waves in nondispersive media [8], the
study of disordered systems and pinned manifolds [9], or the
formation of large-scale structures in cosmology [10,11] (see
[3] for a recent review). In the cosmological context, where
one considers the inviscid limit without external forcing, it is
known as the “adhesion model” and it provides a good de-
scription of the large-scale filamentary structure of the cos-
mic web [12]. Then, one is interested in the statistical prop-
erties of the dynamics, as described by the density and
velocity fields, starting with a random Gaussian initial veloc-
ity [2,13] and a uniform density. These initial conditions are
the signature of quantum fluctuations generated in the pri-
mordial universe and agree with the small Gaussian fluctua-
tions observed on the cosmic microwave background. In the
hydrodynamical context, this setup corresponds to “decaying
Burgers turbulence” [13].

This problem has led to many studies, focusing on power-
law initial energy spectra (fractional Brownian motion) in
one dimension, Ey(k) k", especially for the two peculiar
cases of white-noise initial velocity (n=0) [1,2,14,15] or
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Brownian motion initial velocity (n=-2) [14,16-18]. In-
deed, in these two cases the initial velocity field is built from
a white-noise stochastic field (either directly or through one
integration), which gives rise to Markovian processes and
allows to derive many explicit analytical results. For more
general n, it is not possible to obtain full explicit solutions,
but several properties of the dynamics are already known
[8,13]. In particular, for -3 <n <1, the system shows a self-
similar evolution as shocks merge to form increasingly mas-
sive objects separated by a typical length, L(r)—the integral
scale of turbulence—that grows as L(z) ~ /"3 while the
shock mass function scales as In[n(>m)]~-m"*? at large
masses [13,14,19,20]. In spite of these common scalings, the
range —3<<n<1 can be further split into two classes, as
shocks are dense for —3<<n<—1 but isolated for —1<n
<1 [14].

In this article, we consider the decaying Burgers dynamics
in d dimensions, for random Gaussian initial conditions and
power-law initial energy spectra such that the system dis-
plays a self-similar evolution. This is in particular the case of
interest in the cosmological context, which shows a hierar-
chical evolution as increasingly large scales turn nonlinear as
time goes on. Applying to the Burgers dynamics methods
that have been used to study the collisionless gravitational
dynamics encountered in cosmology, we present a saddle-
point approximation (instanton technique) that allows deriv-
ing some properties of the velocity and density fields in two
regimes: (i) the quasilinear regime associated with early
times or large scales and (ii) the rare-event tails of the veloc-
ity and density distributions at any time or scale.

This article is organized as follows. We first introduce in
Sec. II the equations of motion and the initial conditions that
define our system and we recall the geometrical interpreta-
tion of the Hopf-Cole solution of the dynamics. We also
define the overdensity, 7,, and the velocity divergence (i.e.,
spherical velocity increment), ©,, within spherical cells of
radius r, which are the two quantities that we study in this
paper. Then, we briefly describe in Sec. IIT how the dynamics
can be studied through perturbative expansions, which hold
at early times or large scales, and we make the connection
with the Zeldovich dynamics that is equivalent from a per-

©2009 The American Physical Society


http://dx.doi.org/10.1103/PhysRevE.80.016305

P. VALAGEAS

turbative point of view. Next, we present in Sec. IV a saddle-
point approximation that allows to derive the asymptotic
probability distributions P(7,) and P(0,) reached in the qua-
silinear limit (i.e., at early times or large scales). Then, we
show in Sec. V how to modify this approach to take into
account shocks, and we derive the rare-event tails of these
probability distributions, at any fixed time and scale. This
also yields the high-mass tail of the mass function of point-
like objects (shocks in the one dimensional case). Finally, we
conclude in Sec. VI.

II. BURGERS DYNAMICS
A. Equations of motion and initial conditions
We consider the d-dimensional Burgers equation in the
inviscid limit (with d=1),
Ju+ (u-Vju=vAu, v— 0, (1)

for the velocity field u(x,z), and the evolution of the density
field p(x,?) generated by this dynamics, starting from a uni-
form density p, at the initial time #=0. The latter obeys the
usual continuity equation

dp+V-(pu)=0 and p(x,0) = p,. (2)

Then, since there is no external forcing in Egs. (1) and (2),
the stochasticity arises from the random initial velocity
uy(x), which we take to be Gaussian and isotropic, whence
(u)=0 by symmetry. Moreover, as is well known [3], if the
initial velocity is potential, uy=—Vy, it remains so forever,
so that the velocity field is fully defined by its potential
(x,1), or by its divergence 6(x,7), through

u=-Vy, 60=-V-u=A¢. (3)

Normalizing Fourier transforms as

0(x) = f dke™*(k), (4)

the initial divergence 6, is taken as Gaussian, homogeneous,
and isotropic so that it is fully described by its power spec-
trum Peo(k) with

(B)=0,  (By(k,)By(ko)) = Sp(k, + kz)Pao(kl), (5)

where Jp, is the Dirac distribution. In this article we focus on
the power-law initial power spectra,

Py (k) o K374 with —3<n<1. (6)

Thus, the initial conditions obey the scaling laws

law
A>0: Gp(N'k) = NI2g (), (7)

law
Op(Ax) = N2 6y(x), (8)

where “LAW” means that both sides have the same statistical
properties. This means that there is no preferred scale in the
system and the Burgers dynamics will generate a self-similar
evolution for -3 <<n<1, as seen in Sec. II D. This is why we
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only consider the range —3<<n<1 in this article. For the
initial velocity and potential this yields for any A >0,

aw law

1
uy(Ax) = N 20(x),  gp(Ax) = N 2g(x). (9)

Since we have (k,7) =i(k/k?)6(k,?), the initial energy spec-
trum is a power law,

(Uy(k,) - 0y(ky)) = Sp(k; + ky)E(ky), (10)
with
Eo(k) = k—zp(,o(k) oc g1, (11)

The initial velocity correlation at distance x reads as

(up(xy) - up(xy)) = f dke™ ™ E(k)

* J )1 (kx)
- 2w f k12 ) o

(12)

where x=xX,-x; and J;)_(kx) is the Bessel function of the
first kind of order d/2—1, whereas the initial one-point vari-
ance is

27 [

r(drR) ),

(luo*) = f dKE(k) = dkk® ' Eo(k).  (13)

Thus, for —1 <n<1 the initial velocity correlation decreases
at large distance as power law (12), in agreement with scal-
ing (9), while the one-point variance at x=0, Eq. (13), di-
verges because of the contribution from high wave numbers.
Then, the initial velocity field is singular (e.g., a white noise
for d=1 and n=0) but this ultraviolet divergence is regular-
ized as soon as r>0 by the infinitesimal viscosity [1]. For
—3<n<-1 integral (13) shows an infrared divergence. In
this case, the initial velocity field is no longer homogeneous
and only has homogeneous increments (but the divergence 6
is still homogeneous) [4]. Then, to build the initial velocity
from its divergence one must choose a reference point, such
as the origin x,=0, with uy(xy)=0, and define the initial
velocity in real space as

uy(x) = f dk(e™* - ¢EXo)giy(k), for —3<n<-1.

(14)

Then, Eq. (12) no longer applies but the initial second-order
structure function, {Juy(x)—ug(xy)*), grows as x™"~!. Note
that because of the nonlinear advective term in Burgers equa-
tion (1), the increments of the velocity field are no longer
homogeneous for 1> 0, which also means that the divergence
0(x,1) is no longer homogeneous either. However, at large
distance from the reference point (i.e., taking the limit |x,|
— 00 or |x|—®), we can expect to recover an homogeneous
system (in terms of velocity increments and matter distribu-
tion) (see [21] for more detailed discussions). This can be
shown explicitly for the case d=1 and n=-2, where the ini-
tial velocity field is a Brownian motion [17,18]. On the other
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hand, we may add a low-k cutoff A to the initial power
spectrum and restrict ourselves to finite times and scales
where the influence of the infrared cutoff is expected to van-
ish for equal-time statistics.

B. Density contrast and linear mode
In order to follow the evolution of the matter distribution
we define the density contrast, &(x,1), by
p(X,1) = py
Po

ox,1) = (15)
Then, if we linearize the equations of motion [Egs. (1) and
(2)] we obtain the solution

_ vt

- - ~ - 1
B0k, = o(K)e™ ", 3(k.1) = Gy(k)—5—

where the subscript L stands for the “linear” mode. In the
inviscid limit, v— 0%, this yields
O (k0) =6k, S(k.r)=16y(k), (17)

v— 0*:

which could also be obtained by setting v=0 in Eq. (1).
Then, when we study the system at a finite time 7> 0, we can
as well define the initial conditions by the linear density field
6;(x,1), which is Gaussian, homogeneous, and isotropic,
with a power spectrum

=3<n<l: Pg(kn)=1Pg (k) otk (18)
and an equal-time two-point correlation
C(SL(Xsz) = (O(x1,1) O1(X2,1))

J(ar)-1(kx)

(eoyant Lo, Fx,

= (2m)? f dlek*™!
0

(19)

where x=|x,—x,|. Note that for any n>-3 the initial density
field is homogeneous, even though the initial velocity only
shows homogeneous increments when -3 <n<<-1.

Here we may add a few comments on the initial condi-
tions that are relevant to the cosmological context. Let us
first briefly recall how Burgers equation (1) arises in this
case. In the standard cold dark matter scenario [22], about
83% of the matter content of the universe is in the form of a
cold dark matter component, whereas ordinary baryonic mat-
ter only forms the remaining 17% (in addition, there is a dark
energy component, which is consistent with a cosmological
constant in the Einstein equations, which makes about 72%
of the energy content of the universe, while the previous two
matter components only form the remaining 28%) (see [23]).
The cold dark matter has a negligible velocity dispersion
(whence the label “cold”) and it has only very weak non-
gravitational interactions (whence the label “dark,” as it has
only been “seen” through its gravitational effects so far).
Then, it is well described as a pressureless fluid coupled to
its own gravity (here we focus on the late universe, after the
end of the radiation-dominated era, about 5 X 10* years after
the Big Bang, and on scales smaller than the Hubble scale,
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where the Newtonian approximation is valid). Therefore, the
growth of matter density fluctuations is governed by the
pressureless Euler equation and the continuity equation,
coupled to the Poisson equation, in an expanding background
[24]. Since the gravitational force derives from the scalar
gravitational potential, it does not generate any vorticity, and
any primordial vorticity is diluted by the expansion of the
universe (this only holds in the linear regime, as shell cross-
ings can generate vorticity in a nonperturbative fashion).
Then, using a rescaling of time and velocity field, which
brings out the deviations from the mean Hubble flow (and
also absorbs the effect of the uniform cosmological con-
stant), and making the approximation that the velocity and
gravitational potentials remain equal (this is exact in the lin-
ear regime and in one dimension, d=1, before shell cross-
ing), one obtains the Zeldovich equation [25]. This corre-
sponds to Burgers equation (1) with v=0. Then, one adds an
infinitesimal viscosity, v— 0%, to prevent shell crossing
[10,11]. This induces a sticking of particles within shocks,
which is intended to mimic the trapping within gravitational
potential wells [12].

Next, in the cosmological context, the present matter den-
sity fluctuations are assumed to arise from the growth of tiny
quantum fluctuations generated during an inflationary stage
in the early universe. Moreover, these Gaussian initial fluc-
tuations almost have a Harrison-Zeldovich power spectrum,
which corresponds to n=1 in Eq. (18) above (observations
give n=0.96 [23]). The case n=1 is also called “scale
invariant,” as it gives a gravitational potential power
spectrtum of the form P (k) ock1-d=f=d o that all
wave numbers contribute with the same weight and the two-
point correlation is formally scale invariant, C l/,O(x)
o f dkkd“P%(k)W(kx) is independent of x [where W(kx) is
some filtering function on scale x]. Within the inflationary
scenario, this property arises from the fact that the only rel-
evant scale is the Hubble scale, which remains roughly con-
stant during this stage (this can also be understood from the
fact that during an exponential expansion there is no genuine
origin of time, i.e., the de Sitter spacetime is invariant under
time translations so that wavelengths generated at different
times share the same properties). Then, since these fluctua-
tions have remained small until recent times they have
evolved through linear theory until the matter-dominated era
and the Newtonian regime. Therefore, they have remained
Gaussian and different wave numbers have evolved indepen-
dently (the linearized equations of motion are diagonal in
Fourier space) until a redshift z~ 10°. However, the primor-
dial spectrum with n==1 has been modified in between, dur-
ing the radiation-dominated era. Indeed, during this stage,
density fluctuations on scales larger than the Horizon keep
growing whereas they oscillate on small scales due to the
pressure associated with the coupling to the radiation com-
ponent of the universe (photons). This implies that fluctua-

tions SL(k) are multiplied by a transfer function T(k) that
decays as k=2 at high wave numbers. Then, the “initial” den-
sity power spectrum P,;O(k) used to study the formation of
large-scale structures in the late universe is the primordial
one, with n=1, multiplied by T(k)?. This yields a curved
cold dark matter power spectrum, with a local slope n that
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runs from 1 at low k to =3 at high k. Thus, today at z=0 we
have n=-2 on galactic scales and n=-1 slightly above
cluster scales [24,26]. This corresponds to the range studied
in this article. Then, power-law power spectra with -3 <n
<1 can model the dynamics on the ranges of interest for
specific purposes. On the other hand, the simplifications as-
sociated with power-law power spectra, such as scaling laws
(39)—(41) and self-similar evolution (43) seen below, can be
used to check the accuracy of numerical algorithms and to
shed light on the dynamics [27].

C. Spherically symmetric statistics

In this article, in order to take advantage of the statistical
isotropy of the system, we focus on two spherically symmet-
ric quantities, the overdensity, #,, and the mean divergence,
0,, within spherical cells of radius r, which we define as

PV po

and

®,=tJ d—xa(x)=—ij dxu(x) - %, @1)
vV Vs

where we used Eq. (3). Here V and S are the volume and the
surface of the (d—1) sphere of radius r, X is the unit radial
vector, and we multiplied the divergence 6 by time ¢ in defi-
nition (21) to have a dimensionless quantity ©,. The mo-
ments (®?) can be understood as dimensionless spherical
velocity structure functions, the usual longitudinal velocity
structure functions being defined as ([ (u(x)—u(0))-x]?) for a
given direction X and length |x|, while in Eq. (21) we inte-
grate over all directions. In one dimension, d=1, up to a
sign, O, is simply the dimensionless velocity increment over
the distance 2r,

d=1: 0,=- i[u(r) —u(-r)]. (22)
2r

In arbitrary dimension, —@®, is the dimensionless velocity
increment over distance 2r averaged over all directions about
a given point. We investigate in this article the probability
distributions P(7,) and P(0,) in the quasilinear regime (i.e.,
at large scales or early times), and their tails in any regime.
The system being homogeneous we can focus on the cell that
is centered on the origin, and this gives in Fourier space

5, = f dkSK)W(kr), with (23)

ax . X d Jd/z(kr)
W(kr) = f —e’kxzzdfzr(—+ 1) . (29
vV 2 (kr)??

In the linear regime we obtain from Eq. (17)
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t
6,=0,,=- ‘—/j dxuj(x) - X. (25)
s

For initial conditions (18) the linear density contrast &, is
Gaussian, of mean zero, (6;,)=0, and covariance Cs, (r,7,)
with

CﬁLr(rlﬁrZ) = <5Lr| 5Lr2> (26)
27711/2 %
= TTa7] dkkd‘lP,;L(k)W(krl)W(krz) (27)
0
P F[n+3 d+l . dnn
m b ; + 9’ Y 9’
("1+”2)n+32 N2 2 ("1""‘2)2
(28)

where the last relation [Eq. (28)] only holds for —-3<n<d
—1 [if n=d-1 integral (27) diverges at high k and the cor-
relation C 5Lr(r1 ,r») is a distribution, such as a Dirac distribu-
tion for {n=0, d=1}].

Then, the linear variance reads as

n<d-2 oy =(8,)=Cs (rnr)=fr"> (29)

Indeed, we can note that integral (27) converges at k— 0 for
any n>-3 but only converges at k— o for n<d-2, when
ri=r,. Therefore, in dimensions d<<3, the variance o%u
shows an ultraviolet divergence for a power index in the
range d—2<n<1 (we only consider the range -3<n<1 in
this article). Of course, as soon as >0, the nonlinear evolu-
tion associated with the Burgers dynamics (shocks) makes
the nonlinear variance (&7) finite. In such a case one could
also study the density field smoothed by a Gaussian window,
oce W (2’2), instead of spherical top hat (20), to obtain a finite
linear variance o'fsu, but we shall not investigate this alterna-
tive in this paper.

We also introduce the spherical component of the initial
radial velocity, u,, which reads from Eq. (25) as

r
Upr=— aaLr’ (30)

since V=(r/d)S. This is the mean initial radial velocity at
radius 7. As with %, and ©,, for spherical components we
note the dependent coordinate r as an index, to distinguish
from the d-dimensional field uy(x) (but contrary to 7, and
0®,, u, is the mean radial velocity at radius r, rather than
within the volume V). It will also be useful to consider the
spherical component of the initial velocity potential, which
we define from Eq. (3) as

" ’ (" ’or
l//0r=_ dr uOr’=g dr'r 6Lr” (31)

0 0

that is, we choose to normalize the initial potential by
#0(0)=0. Then, the initial radial velocity and potential two-
point correlations are
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TABLE 1. The initial velocity and potential correlations C, (ry,ry) and Cy (ry,rp) of the spherical
component of the initial conditions, for some values of n and d where Egs. (27) and (33) simplify (with a
dimensional normalization factor set to unity). The last column shows the covariance of the linear density
contrast &y, within radius r at time 7. Here we assumed r; <r,, except for the velocity and density correla-
tions in the case {n=0,d=1}, and formulas for r; > r, are obtained by exchanging r; and r,. The correlations
are singular at r;=r,, except in the limit d— shown in the last line (where the velocity and potential
correlations also become vanishingly small as compared with the density correlation).

n d Cu(,r("l J72) C%r("l \72) CﬁLr(rl ,72)
0 1 Oplri=ra) ry 2op(ri=ry)/ (ryry)
0 3 rl/r% r1(3ry=r)/(2ry) 9t2/rg
-1 2 ri/r r%[1+1n(r2/r1)]/2 4t2/r§
-2 1 r r%(3r2—r])/6 21r,
3,022 2,2 2 2 2,03
-2 3 ri—ri/(5r3) ri(ri=5r1r,+10r3)/(20r,) 9t [1/ry—r7/(5r5)]
n d—® 7| rz(r%+ }’%)_(’“’3)/2/d2 [(r%+ r%)“_”)/z— ri_"— ré_"]/[dz(nz— 1] tz(r%+ }’%)_(”"3)/2
& rirp dq (@ [x-gqf
C, (ri,r)=——Cy (r,r))=55Cs (r1,r2), (32 X,t =2Vln-[ exp| = — .
uor( 1572) Irydr, %r( 1:72) Py 5Lr( 172), (32) H(x,1) (4wt p 2y 4ot

which can be obtained from Egs. (26)—(28), and

2 AT (d)2) + 177 J“’
Cy (r,ry) = dkk‘= P, (k
.//Or(ﬁ r) T(d12)d . 90( )
(J(d/z)—1(k"1) 2]‘(‘”2)> (J(d/z)—1(k"2)
(kr) 21 T[d2]) \ (krp) @
21—(d/2))
- , 33
I'd2] (33)
with a variance
-3<n<lI: Uzz/fo,z Cl/,Or(r,r) oo 171, (34)

Note that 0'12//()" is finite and well defined over the whole range
3<n<l.We give in Table I the initial radial velocity and
potential correlations Cuor(rl,rz) and C %r(rl,rz) for a few
low integer values of n and d where they take a simple form,
as well as the limit d—oc. We also show the covariance
C,;Lr(rl ,r,) of the linear density contrast at time ¢ within ra-
dius r, from Eq. (27). We can check that they satisfy Eq.
(32). The formulas are written for r;<r, (except for the
velocity and density correlations in the case {n=0, d=1})
with a dimensional normalization factor set to unity. For
these power-law initial power spectra, the normalizations
used in Table I can always be achieved by a rescaling of
spatial coordinates.

D. Hopf-Cole solution and self-similarity

As is well known, nonlinear Burgers equation (1) can be
solved through the Hopf-Cole transformation [5,6], by mak-
ing the change of variable #(x,f)=2vIn Z(x,). This yields
the linear heat equation for =(x,#), which leads to the solu-
tion

(35)

Then, in the inviscid limit v— 0%, a steepest-descent method
gives [1,3]

x—qf?

W(x,1) = m:tX[ o(q) - —} - (36)

2t

If there is no shock, the maximum in Eq. (36) is reached at a
unique point q(x,7), which is the Lagrangian coordinate of
the particle that is located at the Eulerian position x at time ¢
[1,3]. Moreover, this particle has kept its initial velocity and
we have

X —q(x,1)

(37)
t

u(x, 1) =uy(q) =

If we have a shock at position x there are several degenerate
solutions to Eq. (36) and the velocity is discontinuous [as
seen from Eq. (37), as we move from one solution q_ to
another one ¢, when we go through x from one side of the
shock surface to the other side] while the density is infinite.
Solution (36) has a nice geometrical interpretation in terms
of paraboloids [1,3]. Thus, let us consider the family of up-
ward paraboloids P .(q) centered at x and of height ¢, with
a curvature radius 7,

lq-x|*

o (38)

Px,c(q) =
Then, moving down Py .(q) from ¢=+%, where the parabo-
loid is everywhere well above the initial potential i,(q) [this
is possible for initial conditions (6) since we have |¢(q)|
~¢g"="2 which grows more slowly than ¢* at large dis-
tances], until it touches the surface defined by i;(q), the
abscissa q of this first-contact point is the Lagrangian coor-
dinate q(x,7). If first-contact occurs simultaneously at sev-
eral points there is a shock at the Eulerian location x. One

can build in this manner the inverse Lagrangian map
x—q(x,1).
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For initial conditions (6) that we consider in this paper,
the rescaled initial velocity potential i,(Aq) has the same
probability distribution as X172y, (q) for any A >0, when
we normalize by uy(0)=0 and ,(0)=0, as seen in Eq. (9).
Then, explicit solution (36) gives the scaling laws

aw

1
lﬁ(X,[) — t(l—n)/(n+3)¢(t—2/(n+3)x, 1)’ (39)
law
ll(X,t) — l‘_(n+1)/("+3)ll(t_2/(n+3)x, l) , (40)
law
q(x,t) — IZ/("+3)(](Z‘_2/("+3)X, l). (41)

For the spherical overdensity 7, and the spherical velocity
increment ©, this yields

— r — r
7’(77r;t)=7’<77;m), 7’(®r;t)=7’<®;m>,
(42)

that is, the distributions P(7,;¢) and P(0,;t) of the overden-
sity and velocity divergence at scale r and time ¢ only depend
on the ratio r/r2/"3),

These scalings mean that the dynamics is self-similar: a
rescaling of time is statistically equivalent to a rescaling of
distances, as

A>0: f— A,x — Ny, (43)

Thus, the system displays a hierarchical evolution as increas-
ingly larger scales turn nonlinear. More precisely, since in
the inviscid limit there is no preferred scale for power-law
initial conditions (6), the only characteristic scale at a given
time 7 is the so-called integral scale of turbulence, L(z),
which is generated by the Burgers dynamics and grows with
time as in Eq. (43),

L(7) oc 2043, (44)

It measures the typical distance between shocks, and it sepa-
rates the large-scale quasilinear regime, where the energy
spectrum and the density power spectrum keep their initial
power-law forms [Eqs. (11) and (18)], Psk,t)or?k"*34,
from the small-scale nonlinear regime, which is governed by
shocks and pointlike masses, where the density power spec-
trum reaches the universal white-noise behavior [i.e., Pg(k,1)
has a finite limit for k> 1/L(¢)].

This self-similar evolution only holds for n<<1, so that
|(q)| grows at larger scales; see for instance Eq. (34), and
n>-3, so that |¢;(q)| grows more slowly than ¢ and solu-
tion (36) is well defined [13]. This is the range that we con-
sider in this paper. The persistence of the initial power law at
low k for the energy spectrum, E(k,) < k"*'=%, that holds in
such cases, is also called the principle of permanence of
large eddies [13].

III. PERTURBATIVE EXPANSION AND ZELDOVICH
DYNAMICS

Although the Burgers dynamics can be integrated through
Hopf-Cole solution (36), the computation of its statistical
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properties for random initial conditions remains a difficult
problem for general n and d. Only in the peculiar one-
dimensional cases n=0[14,15,28-30] and n=-2 [14,16-18],
with d=1, where the initial velocity is a white noise or a
Brownian motion, one can derive explicit analytical results,
taking advantage of the Markovian character of these two
specific stochastic processes. For general n and d one must
resort to approximation methods, such as perturbative expan-
sions, as with most nonlinear dynamics. In particular, at early
times we may look for the solution of the equations of mo-
tion [Egs. (1) and (2)] as an expansion over powers of time,

Sk, =, t”fdkl---dkpéD(kl + - +k,-k)
p=1

X Fy(ky, ... .k, 0(Kk)) - B(k,), (45)

and
5(k,t)=2 ! fdk1~--dkp5D(k1+ ---+kp—k)
p=1

X Gk, ... .K,) Oo(k,) - (k). (46)

The Dirac factors express the invariance through translations
of the equations of motion, F;=G ;=1 from Egs. (17), and
the higher-order kernels F), and G, obey a recursion relation
that is obtained by substituting expansions (45) and (46) into
the equations of motion [Egs. (1) and (2)]. This yields in

Fourier space

pr(kl’ ’kp) - Gp(kl’ ’kp)
"k, k
p Kie
= 2 _ILZIG((kl’ 9k€)Fp—€(k€+l’ 7kp)7
o kil
(47)
and
S P ki)
€ Bl
(P=1DG,(ky, ... k,) = > L=
! o 20k (Pl
X Go(Ky, ... k()G o(Kpyrs - Ky),
(48)

where we note k; ;=k;+K;,+---+k; with j=1i. This gives for

p=2 the kernels

(kip - k) (kjp - ky)
21245

F(k;,ky) = , (49)

and
k(K - Ky)
2343

where we defined F5(k,,Kk,)=[F,(k,,k,)+F,(k,,k;)]/2 and
G, the symmetrized kernels. In Egs. (45)-(50) we took the
inviscid limit »=0". Then, the effects of the infinitesimal
viscosity (i.e., the formation of shocks) completely disappear
in these perturbative expansions. This implies that taking
shocks into account requires nonperturbative methods.

Gi(ky.ky) = , (50)
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Note that expansions (45)—(50) over powers of time are
also expansions over powers of the initial velocity fluctua-
tions 6y(x), or equivalently over powers of the linear density
mode &;(x,7) given in Eq. (17). Since the amplitude of the
linear density fluctuations decreases at large scales, as seen
in Eq. (29), the perturbative expansions apply to both limits
of early time or large scale. In particular, in these limits the
distributions P(7,) and P(0,) converge to the Gaussian of
variance a2 Then, at early times, or when the system is

smoothed over large scales, the displacements of particles
are small and one recovers at leading order the linear theory
of Sec. I B, which is set by the initial conditions. A simple
example is provided by the case {n=-2, d=1} of one-
dimensional initial Brownian velocity [17,18]. However, this
only holds for n<<d-2, where the linear density variance
05, 1s well defined. For n=d—-2 it is not possible to neglect
shocks as soon as 1#0, and the distributions P(7,) and
P(0,) remain far from Gaussian at any time and scale. This
is for instance the behavior obtained in the case {n=0, d=1}
of one-dimensional initial white-noise velocity [15,28-30].
We shall recover these two different behaviors in the follow-
ing sections.

The perturbative approach [Egs. (45) and (46)] is the stan-
dard method used in cosmology to study the gravitational
dynamics at large scales and early times [24,26,31] [in this
case equation of motion (1) gets two new linear terms, asso-
ciated with the gravitational force and a friction term that
comes from the expansion of the universe and the change to
comoving coordinates, but the nonlinearity is the same and
the perturbative expansion is similar]. Indeed, in the standard
cold dark matter model [22], the amplitude of the linear den-
sity fluctuations decreases at larger scales (i.e., -3<n<1 as
in the present paper, with the same definition of the power-
spectrum index n for d=3), and the perturbative approach
allows to describe the large scale structure of the universe
(e.g., beyond the scale associated with clusters of galaxies
today), that is, the cosmic web formed by voids, filaments,
and walls that join the nonlinear high-density objects such as
galaxies or clusters of galaxies. In the hydrodynamical con-
text, perturbative expansions over powers of time, such as
Egs. (45) and (46), have been used for instance in [32,33] to
study Eulerian and Lagrangian two-point correlations. They
can also serve as a basis for Padé approximants that attempt
to improve the convergence of the series [33,34].

From the point of view of perturbative expansions
(45)—(50), Burgers dynamics (1) becomes equivalent in the
inviscid limit to the Zeldovich dynamics [25], obtained by
setting the right-hand side in Eq. (1) to zero. This describes
the free motion of collisionless particles, which always keep
their initial velocity u, and can cross each other. In a La-
grangian framework, the trajectory of the particle of initial
Lagrangian coordinate q=0 always reads as

x(q,1) = q + ruy(q), (51)

as in Eq. (37) that only held before shocks. Before orbit
crossings the conservation of matter gives for the density
field
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det( —)
aq

1+ 48(x) = f dqdp[x - q - ry(q)], (53)

-1

p(x)dx = pydq, hence 1+ 8(x) = (52)

This gives

which remains valid after orbit crossing as we integrate over
all streams that pass through position x at time . In Fourier
space this yields

~ dq . .
o(k) = e (k@ _ 1), 54
(k) f 2 ( ) (54)
Then, expanding the exponential over u, directly gives the
symmetric kernels F‘; associated with expansion (45) [35],
Lkl,p ) k1 . kl,p : kp
pl K k;

F;(kl, ’kp) =

, (55)
which agrees with Eq. (49) for p=2. From perturbative ex-
pansions (45)—(50) we can compute the cumulants of the
smoothed density contrast 7, and velocity divergence ®, (in
the quasilinear regime where shocks do not contribute, that
is, leading-order terms at early times and large scales for n
<d-3, as discussed in Sec. IV below). For instance, substi-
tuting expression (45), the density three-point correlation
reads in Fourier space as [26,36]

(0(k,) d(ky) (k3)), = Sp(k; + Ky +K3)
X [2Ps (ki.t)Ps (ko) F5(Kk) . Ky) + cyc.
4] (56)

where “cyc.” stands for two terms associated with cyclic
permutations over {K;,K,,k3} of the previous term, while the
dots stand for higher-order terms. Then, from Eq. (23) the
cumulant of order three of the overdensity within radius r
writes

<77§>c=6fdkldk2P6L(klst)P5L(k2st)F;(klsk2)

X W(kr)W(k,r) W([k + Ko|r) + -+ (57)

Using the properties of Bessel functions, such as their addi-
tion theorem, one obtains for instance in dimension d=3
[37,38],

d=3: (g)=(1-n)ay + . (58)
One can use this method to derive the leading-order term of
all cumulants (7). and (®”).. Then, from the characteristic
function ¢(y), defined from Taylor series (64) below, one can
reconstruct the distributions P(7,) and P(0,) in the quasi-
linear regime, o5 <1 [26,38]. We shall describe in Sec. IV
below another method that directly gives the generating
function ¢(y) without using expansions (45)—(50) and that
allows to go beyond the singularities associated with Taylor
series (64). Let us recall here that the previous results only
hold for the case n<d-2, where the linear theory is mean-
ingful (i.e., o5, is well defined).
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IV. QUASILINEAR LIMIT
A. Distribution of the density within spherical cells

We consider here the probability distribution, P(7,), of
the overdensity 7, within spherical cells introduced in Eq.
(20). More precisely, we investigate its asymptotic form in
the quasilinear limit, defined as 05— 0. Therefore, we re-
strict ourselves to the range n<d-2 (in addition to -3 <n
< 1) so that the linear variance o%u is well defined [see Eq.
(29)]. Taking advantage of the statistical isotropy of the sys-
tem, we apply to the Burgers dynamics the steepest-descent
method (instanton technique) that was devised in [39] for the
collisionless gravitational dynamics.

1. Action S[6;]

To obtain the quasilinear limit of the probability distribu-
tion P(7,) it is convenient to first introduce the moment
generating function W(y),

W(y)=(e™") = J dn,e™"P(,), (59)
0

from which we can recover P(7,) through the inverse
Laplace transform

+i% d ,
Pln,) = f ). (60)

Since the system is fully defined by the Gaussian linear den-
sity field at the time of interest, &§;(x) (we usually omit the
time dependence as t can be seen as a mere parameter since
we only consider equal-time statistics), average (59) can be
written as the path integral

W(y) = (det C:sLl)”ZfD5Le—,vm[tSL]—(I/Z)ﬁL-CSL]'fSL, (61)

where 7,[ 8] is the functional that affects to the initial con-
dition defined by the linear density field &;(x) the nonlinear
overdensity 7,, built by Burgers dynamics (1) and (2) at time
t, within the spherical cell of radius r centered (for instance)
on the origin x=0. Here and in the following we use the
short-hand notation for scalar products

o C:si o= f dxldx25L(Xl)C:$2(XlsX2) o.(xy), (62)

where Cgl is the inverse of two-point correlation (19). Equa-
tion (61) is exact but the difficulty of the problem is hidden
in the nonlinear functional #%,[&;]. In order to make some
progress, we consider the quasilinear limit, 05, — 0, associ-
ated with large scales or early times. Then, it is convenient to
rescale the moment generating function as [39]

W(y) = 0) %, (63)

where ¢(y) is the cumulant generating function, which has
the Taylor expansion
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oy =— 3, Z2 e (64)

1ol
p=1 p 5Lr

Substituting Eq. (63) into Eq. (61) gives
e“P(y)/(réL’ — (det ng)l/z f ,DéLe_S[ﬁL]/U%SL,-, (65)

with the action S[§;] given by
2

o
Slod=ynla)+ Lo Cloa.  (66)
Rescaling (63) allows us to derive the quasilinear limit
through a steepest-descent method since the action S[&;] no
longer depends on the amplitude of the two-point correlation
Cs, (as G%Lroc Cs,) and path integral (65) is clearly dominated
by the minimum of the action § in the limit o = 0.

Here we may note that the use of a path-integral formal-
ism to analyze dynamical systems such as Egs. (1) and (2) is
a standard approach, following the operator formalism of
Martin-Siggia-Rose [40] or the functional method of
Phythian [41-43]. In such a framework, path integral (61) is
rewritten in terms of the nonlinear fields 8(x,7) and 6(x,7) so
that 7, is a simple linear functional of & as in Eq. (20), by
introducing a Dirac functional such as &p[du+(u-V)u

—vAu-¢£] (and similarly for 5) to enforce equation of motion
(1), where, depending on the system, &(x,f) can represent
both a stochastic external forcing and the random initial con-
ditions. Taking care of the Jacobian, which is usually equal
to unity thanks to causality [44], one obtains a path integral
such as Eq. (65), but over the nonlinear density field 8(x,7)
and its conjugate \(x,?), rather than over & (x), and over the
velocity pair {6(x,7), w(x,2)}. This procedure is described in
details in [34] for the Zeldovich dynamics recalled in Sec. IIT
above, which amounts to set the right-hand side in Burgers
equation (1) to zero (see also [45] for the collisionless gravi-
tational dynamics). For noisy dynamics, where one adds a
stochastic external forcing, this method is presented for in-
stance in [46,47] for the forced Burgers dynamics and in [48]
for the forced Navier-Stokes dynamics.

Then, one obtains a cubic action §[ 8, ;N\, u]. Expanding
over the cubic term gives back the perturbative results dis-
cussed in Sec. III, as one recovers an expansion over powers
of the initial power spectrum Ps,. On the other hand, this
path integral can serve as a basis for other expansion
schemes, such as large-N methods [34], which recover at
leading order Kraichnan’s direct interaction approximation
when applied to the Navier-Stokes equations [49,50].

Alternative expansion schemes, where one does not ex-
pand over powers of some coupling constant or parameter,
are provided by steepest-descent methods (instanton tech-
niques [44]) where one expands around a saddle point of the
action S. If this saddle point is nonperturbative this approach
can go beyond perturbative expansions such as those de-
scribed in Sec. III, as we shall see more clearly in Sec. V
below. This approach has been applied to the forced Burgers
dynamics in [46,47] and to the forced Navier-Stokes dynam-
ics in [48]. In particular, this allows to obtain the right expo-
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nential tail of the probability distribution of the velocity in-
crement [46,51] and its left power-law tail [52].

In the noiseless case, a problem that arises when one tries
to apply this method to the standard action S[ &, 6;\, w], di-
rectly obtained from the equations of motion as described
above, is that this action is highly singular when there is no
external forcing. Indeed, in such cases the dynamics is fully
deterministic so that the system is fully defined by the initial
condition 6(x) [or by &§;(x) at a given reference time]. Then,
one can check that this action S is only finite for fields that
obey equations of motion (1) and (2) and infinite elsewhere,
which simply means that the path integral only counts fields
that are solutions of the dynamics, as it should. Therefore,
the action is only finite over a lower dimensional subspace
parameterized by 6,(x), that is, the time degree of freedom of
the fields 8(x,7) and 6(x,t) is not real. Then, the action has
no finite second derivative and the steepest-descent approach
is not very well defined. Moreover, any expansion point must
be an exact solution of the dynamics so that this approach
does not bring much progress.

By contrast, path integral (65) only involves the true de-
grees of freedom of the system, parameterized by the linear
density field &§;(x,r) at the given time of interest (i.e., we do
not integrate over nonexistent time degrees of freedom).
Then, the action §[ 8, ] is finite and has a well-defined second
derivative, at least close to y=0 and 6;,=0, so that the
steepest-descent approach rests on firm grounds. Moreover,
the difficulty associated with the nonlinear functional 7,{ 5]
would not be overcome by using the standard action
S8, 6;\, 1] since in this case too we would need to study
exact solutions of the dynamics. Thus, action (66) is well
suited to the application of the steepest-descent approach to
deterministic dynamics, as we shall see in the following. In
practice, in order to handle the term #,[ &, |, one must be able
to obtain saddle points where the dynamics can be explicitly
solved in simple terms. In our case, it is natural to take ad-
vantage of the statistical isotropy of the system to look for
spherically symmetric solutions of the dynamics. Then, this
requires to focus on spherically symmetric observables, such
as 7, and 0, defined in Eqgs. (20) and (21) so that spherical
initial conditions can also be saddle points of the action
S[8;]. In fact, in such a case, a minimum of the action with
respect to spherically symmetric initial conditions is auto-
matically a saddle point with respect to nonspherically sym-
metric initial conditions (but not necessarily a minimum). In
our case, we shall see below in Sec. IV A 2 that we really
obtain a local minimum in the quasilinear regime (i.e., for
small y and &;). Then, even if there exists another local
minimum reached for some nonspherical initial conditions,
which requires a finite fluctuation &;, such a contribution is
exponentially subdominant in the quasilinear limit, o5, —0,
so that we obtain exact results in this limit, without the need
to explicitly study the functional 7,[8;] over all possible
nonspherical states.

Note that for nonspherically symmetric observables (for
instance we could choose cubic cells to define the mean den-
sity 7, and velocity divergence ©,), we could apply the same
approach and look for local minima with respect to spheri-
cally symmetric initial conditions. However, these would no
longer be saddle points with respect to nonspherical fluctua-
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tions, and would not be the true minima of the action. Then,
one would only obtain lower bounds for the asymptotic be-
havior of the distribution P(X), where X is any observable
and is not necessarily spherically symmetric, in the quasilin-
ear or rare-event limits. One can expect that the exponents
obtained in this fashion would remain correct, but the nu-
merical factors within exponential tails would only be ap-
proximate. The asymptotic behaviors obtained within this ap-
proximation would clearly show the same qualitative
properties as those obtained for the spherical observables
studied here (since one uses the same initial states). Thus, it
is straightforward to obtain lower bounds for any distribution
P(X), in the quasilinear or rare-event limits, from the method
described in this article and we restrict ourselves to spheri-
cally symmetric observables (20) and (21) in the following.

2. Spherical saddle point

As explained above, and as for the gravitational dynamics
[39], taking advantage of the spherical symmetry of action
(66), we can look for a spherical saddle point. Indeed, since
the first functional derivative, DS/D&,(q), taken at a spheri-
cal linear density field &;(q), is spherically symmetric, it
only depends on |q|. Then, the first variation AS due to a
nonradial perturbation Ad;(q) vanishes,

DS
AS = f dqpéL(q)AéL(q) =0, (67)

when

6.(q) = .(la)) andfl d§As(q) =0,  (68)
ql=¢

where the second equality is the integral over angular vari-
ables at any radius g. Therefore, a saddle point with respect
to spherically symmetric states (i.e., radial degrees of free-
dom) is automatically a saddle point with respect to angular
degrees of freedom, whence a true saddle point with respect
to any infinitesimal perturbation A&;(q). Then, we can re-
strict the action S[ ;] to spherically symmetric initial condi-
tions and look for its minimum within this subspace. For
such initial conditions, the action can be expressed in terms
of the one-dimensional field &, defined as in Eq. (20) over
0<g' <o, (we note by the letter ¢ initial Lagrangian radii,
to distinguish them from the Eulerian radii r reached at time
t). This reads as

2
(o)

Oy
S[anr] :y?]r[(qur] + TLﬁLq{ - C 1

5Lr

: 5Lq£, (69)

where ¢’ is a dummy variable and C 5Lr(q{ ,q5) is the covari-
ance introduced in Eq. (26). Then, saddle points of action
(69) are given by the condition DS/Dé;,=0 over 0<q’
<o, that is,

D,
"D,

+05 f dq"Cy (q'.4")8rp=0.  (70)
0

Multiplying by the operator Cs,, this reads as
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-y N " "o Dﬂr
By = gf dq"Cs, (q'.q") (71)

. Jo D6y
Next, we note that if there have been no collisions (i.e., no
shocks) until time ¢, the spherical collapse or expansion has
remained well ordered, and the mass m within the radius r
comes from the matter that was initially located within a
Lagrangian radius ¢ at time r=0. Then, the overdensity 7,
=m/(pyV) is also given by 77,=(g/r)? and it only depends on
the initial Lagrangian coordinate ¢ of the shell that is located
at radius r at time 7. On the other hand, in the inviscid limit
Burgers dynamics (1) implies that particles that have not
collided yet have kept their initial velocity u,. Therefore, for
a spherical state the initial Lagrangian radius ¢ is related to
the Eulerian radius r by r=q+1u,, whence

-d
= (qlr)! = (1 . ’70‘1) - F(5,). (72)
with
-d
f(stq)=(1 —5—5‘1) , (73)

where u,, is the initial radial velocity at radius g and we used
Eq. (30) [for spherical initial conditions we have wug(x)
=uy,X]. Thus, the overdensity 7, only depends on the initial
velocity at the Lagrangian coordinate ¢, whence on the linear
density contrast &, within the Lagrangian radius g. As a
consequence, it is independent of infinitesimal perturbations
to the initial profile &;,, over inner or outer shells (¢" <g or
q' >q), which only redistribute matter at smaller or larger
radii. On the other hand, under an infinitesimal perturbation
Aép, the Lagrangian radius g and the overdensity 7, are
modified as ¢— g+Aq and 7,— 7,+A7,. From Eq. (72) we
obtain at first order

, by,
Anr =F (5Lq) e Aq + A5Lq ’ (74)
dq’ |,
A A
S _ 424 (75)
7r q

This leads to A7,*Ad;,, which means that the functional
differential D7,/ D4y, in Eq. (71) is a Dirac distribution
centered on ¢"=¢, in agreement with the previous discus-
sion, and we directly obtain the initial profile of the saddle
point as

, C(SL,_(CI/’CI)
Oy *Cs, (q'.q) whence 8, = 5qu_2—.
5

Lq

(76)

Using Eq. (30), this also gives for the initial velocity profile

" Sy Cu, (q'.9)
q “Lq o,
qu’ = qu q_ _5Lq = uoq O-io . (77)
q

Next, the amplitude 5Lq, or the Lagrangian coordinate ¢, can
be determined by substituting profile (76) into action (69)
and looking for its minimum with respect to &;,. This reads
as
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5%‘(10-25Lr
S=yF(op)+ 5 (78)
205
Lq
Then, defining the variable 7 and the function G(7) by
O.(SLr
T=-d, . G(n)=F(6,) =, (79)
Ty,
action (78) and its derivative read as
7 S )
S=yG(n)+—, —=yG'+7. (80)
2 or

Therefore, since at leading order in the quasilinear limit, the
cumulant generating function ¢(y) is given by the minimum
of the action S[&;] from Eq. (65), it is given by the implicit
system

<p(y)=y§/’(r)+§ with 7=-yG'(7). (81)

Thus, the generating function ¢(y) is also the Legendre
transform of the function —7(G)?/2, as defined by

2
e(y) = mTin{yg(T) + ;} = mgin[yg+ T(g) ] (82)

To make sure that solution (81) is indeed relevant, we must
check that it is indeed a local minimum of the action (and not
a maximum), in agreement with Eq. (82) and original path
integral (65). This directly follows from expression (66). In-
deed, for y=0 the saddle point obtained above is simply &;
=0, i.e., 7=0, and the Hessian of the action at this point is
O%L"CELI which is strictly positive. Then, by continuity, for
small y the Hessian around the saddle point given by Eq.
(81) is positive which ensures that it is a local minimum. As
we shall see below in Sec. IV A 3, for some cases it may
only be a local minimum, but the global minimum associated
with finite density contrasts is irrelevant in the quasilinear
limit: it corresponds to the tail of the distribution P(7,) and
it is exponentially suppressed in the limit o5 —0.

It is clear that the procedure described above must recover
the results that would be obtained for the leading-order term
of the cumulants (7). [which is of order 0%52"_1) so that ¢(y)
has indeed a finite quasilinear limit in Eq.r(64)] from the
perturbative expansion presented in Sec. III. Indeed, in both
cases we obtain an expansion over powers of o%u [in the
steepest-descent approach subleading terms would be ob-
tained from Eq. (65) by expanding the action around its
saddle point and performing the Gaussian integrations], as
we actually start from the unperturbed solution &; =0. In fact,
as shown for the case of the three-dimensional gravitational
dynamics [53], it is possible to derive the quasilinear gener-
ating function ¢(y) from the perturbative expansion [Egs.
(45) and (46)], using Taylor expansion (64) and the leading-
order term of each cumulant (7). This gives back ¢(y) as
the solution of implicit system (81) for the unsmoothed case,
where one has G(7)=F(7) (so that there is no dependence on
the initial conditions). Then, one can show that the same
result is obtained in Lagrangian space, where the perturba-
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6Lq’ / 5Lq

FIG. 1. (Color online) The linear density profile of the spherical
saddle point for the cases n=-2, 0, and 0.5, in dimension d=3. This
shows the integrated linear density contrast &y, within the sphere
of radius ¢’, from Eq. (83), and ¢ is the initial Lagrangian radius of
the shell that is at the radius of interest r at time .

tive expansions are built in terms of the Lagrangian coordi-
nates, and the shift from F(5;) to G(7) as in Eq. (79) is
obtained through a mapping from Lagrangian to Eulerian
space [54].

As shown in [39] and described above, the steepest-
descent approach provides the quasilinear generating func-
tion in a more direct fashion. In particular, the integrations
over angles, as in Eq. (57), are automatically included in the
spherical dynamics, and the dependence on n, associated
with the mapping from Lagrangian to Eulerian coordinates
[through the ratio o5,/ 05, in Eq. (79) that measures the
ratio of initial power on scales r and ¢] is automatically
provided by the form of the action S[&;]. In addition, the
definition of ¢(y) as Laplace transform (65) allows to give a
meaning to ¢(y) beyond the radius of convergence of its
Taylor series. Finally, as discussed below, profile (76) of the
saddle point allows us to check the range of overdensity 7,
and Laplace conjugate y to which these results apply. Indeed,
they only hold as long as the saddle point has not formed
shocks yet, which can only be checked from the knowledge
of Eq. (76).

For power-law power spectra (18) radial linear profile
(76) of the saddle point reads as

%_( 2)
5L - 1+x

q

4x
waz2F1| (n+3)72,(d + 1)/2;d + l;m
JF [ +3)2,(d+1)/2;d+1;1]

(83)

with x=¢'/q [see Eq. (28)]. This also gives the linear veloc-
ity profile through Eq. (30). We show in Figs. 1 and 2, the
density and velocity profiles obtained in the three-
dimensional case for n=-2, 0, and 0.5. For integer values of
n and odd d+n the hypergeometric function in Eq. (83) sim-
plifies and we give in Table II the explicit forms obtained for
some low-dimensional cases. Note that the profile is singular
at the Lagrangian radius ¢, associated with the radius r of the
Eulerian cell. We also give in the last row the simple profile
obtained in the limit d— o0, where the singularity disappears.
Note that in this infinite dimensional limit the profile still
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FIG. 2. (Color online) The linear velocity profile of the spherical
saddle point for the cases n=-2, 0, and 0.5, in dimension d=3, as in
Fig. 1. This shows the initial radial velocity u(g’) at Lagrangian
radius ¢’.

depends on n, in agreement with the fact that profile (83)
decays as x~""*3) at large distance, independently of d.

As expected, for all values of n in the range -3<n<1
that we consider in this paper, the density contrast vanishes
at large distance. For n<d-3 it is monotonically decreasing,
but for n>d-3, which corresponds to significant initial
power at high wave numbers, it shows a peak at radius g. On
the other hand, the radial velocity vanishes at the center g’
=0, in agreement with spherical symmetry, but it only decays
at large distance for n>-2. For n<-2 it keeps growing at
large distance (note that the initial velocity field only shows
homogeneous increments for n<<—1 so that this growth is
not surprising).

To make sure that the saddle point obtained above is rel-
evant we must check that no shocks have formed so that Eq.
(72) is valid. The naive Lagrangian map, x=q+u,(q),
shows that a shock occurs when det(dx/dq)=0, that is, when

TABLE II. The linear integrated-density and velocity profiles of
the spherical saddle-point for some values of n and d, where Eq.
(83) simplifies. Here x=¢'/g, where ¢ is the Lagrangian radius
associated with the Eulerian radius of interest r. The profile is sin-
gular at x=1, except in the limit of infinite dimension, d— o,
shown in the last row.

Oy Uog'
5Lq Moq
n d x<l1 x>1 x<l1 x>1
0 3 1 1 X 1
= 2
-1 2 1 1 x 1
X2 X
-2 1 1 1 x 1
X
5 3 5-x 5x7-1 x(5-x%) 5x*-1
4 4x3 4 4x%
( 1 +x2>—(n+3)/2 ( 1+ xz)—(n+3)/2
n 0 X
2 2
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TABLE III. This table shows whether the saddle point (76)
forms a shock after a finite time, which corresponds to a finite
threshold for the density 7, or the velocity divergence ©,. We only
consider the range -3<<n<1 and d=1. If n>d-3 shocks form as
soon as t#0 so that the saddle point (76) is never valid (but it
should give a reasonable approximation if n<<d-2).

n 7>1,0,>0 7,<1,0,<0
n>d-3 Shock as soon as t# 0
2<n=d-3 No shock Shock below a threshold
3<n=-2 No shock No shock

1 +tduy, /dgq'=0 for the spherical saddle point. The profiles
show a singularity at radius g of the form |g’ —¢g|¢™2. Then,
for n>d-3 the velocity has a spike at radius g with infinite
left and right derivatives so that shocks appear as soon as ¢
/| shows a sublinear (or linear) growth
with ¢’ hence there will be no shock, except at the center, for
overdense saddle points (particles reach the center before
duy,/dq’ reaches —1/t). For underdense saddle points, a
shock appears after a finite time for -2 <<n<d-3, while no
shocks form for —3 <n=<-2 since the radial velocity grows
with radius. We summarize in Table III these behaviors as-
sociated with different ranges of the index n of the initial
energy spectrum.

Since in the quasilinear limit we only probe small density
fluctuations we can use the saddle point obtained above for
n<d-3, as shocks only appear after some finite time (or
never). For n>d-3 we should modify the saddle point to
take into account shocks. However, since for moderate times
and density fluctuations this should only change the profile
close to the Lagrangian radius g and give small modifications
to the quasilinear generating function ¢(y) we shall keep Eq.
(81) below for n<d-2 (for n=d-2 where the linear vari-
ance o, diverges it is not possible to neglect shocks). Note
that for large d this problem disappears (see also the last row
of Table II). For all cases shown in Table II the saddle point
obtained above is relevant in the quasilinear regime, as can
be checked from the explicit forms of the velocity profiles
and in agreement with the previous discussion.

3. Cumulant generating function ¢(y)

Close to the origin y=0, the solution of implicit system
(81) always satisfies
2
y~ 7 and (p~y—yz.

(84)

7—0, y—0 G~1-17

Keeping only these low-order terms corresponds to the linear
regime and gives back the Gaussian of variance 0'2 for the
probability distribution P(7,) on very large scales and early
times. This agrees with the fact that the initial conditions are
Gaussian and it means that over large scales or at early times,
that is when o% <1 and for |5,|<1, we recover linear
theory and the prorbability distributions are still governed by
the Gaussian initial conditions. Of course, this breaks down
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for the cases d—2<n< 1 where the linear variance o% itself

is not well defined so that even on large scales the pr(;babil-
ity distributions are strongly non-Gaussian, as seen for in-
stance in [15,28-30] for the case {n=0, d=1}.

For the case n<d-3, where the quasilinear regime con-
sidered in this section applies, the deviations from the Gauss-
ian, associated with higher-order cumulants, appear for finite
density contrast J,, i.e., for finite y and 7. Note that this
corresponds to rare events, as expected for a steepest-descent
approach to be valid. Thus, in the quasilinear limit we are
sensitive to small but finite values of {8,,y, 7} around zero.
Moreover, at leading order the moments and cumulants of
the overdensity are given by expansion (64) of ¢(y) around
the origin. In particular, solution (81) directly gives the
leading-order value of (7)., which can also be derived from
the perturbative expansion of equations of motion (1) and (2)
described in Sec. III.

The previous results are valid for any initial energy spec-
trum, provided o is well defined. For power-law power
spectra (18), using Eq. (29), we obtain from definition (79),

—(n+3)/2
-
r=— 5L"<c_1> == & e (85)

whence
-d

g(T) — ]_-(_ 7_g—(n+3)/(2d)) — (1 + gg—(n+3)/(2d)) ) (86)

In terms of the inverse function 7(G) this reads as
T(g) — d(g(n+1)/(2d) _ g(n+3)/(2d))’ (87)

so that ¢(y) is given by the parametric representation

d
o= 5[(d— n— 1)g(n+1)/d _ 2(d —n- 2)g(n+2)/d

+(d-n-3)gm+dd], (88)

d
y=-— 5g—l[(n + 1)g(n+1)/d_ 2(}’1 + 2)g(n+2)/d+ (n + 3)g(n+3)/d].

(89)

Expanding around 7=0, y=0, and G=1, we obtain the series
expansion of ¢(y). Comparing with Eq. (64) we obtain for
the third- and fourth-order cumulants in the quasilinear limit,

N d-n-2
B

which agrees with Eq. (58) for d=3, and

(m)c 83+ 16d” +84n +21n* = 36d(n +2)
(- a '

UﬁLrHO: S3=

S4=

(91)

Note that although S5 and S, as defined above are called the
skewness and the kurtosis in the cosmological literature, they
are not exactly the skewness and the kurtosis defined in stan-
dard probability theory, the latter being defined as
<773)C/<773)3/ 2 and <77‘,‘>C/(773>f. The reason for the use of Egs.
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TABLE IV. The cumulant generating function ¢(y) of the overdensity 7,, in the quasilinear limit o5 —0, for a few values of n and d,
where explicit solutions of the system [Eq. (88) and (89)] can be obtained. Columns 3-5 show the quasilinear branch, and the associated
range of {y,G} that contains the point {0,1}. Columns 6—8 show the second branch, associated with very rare events, that appears in some
cases. The last row shows the infinite-dimensional limit, d —ce, which no longer depends on n but has no explicit form and shows two
branches.

n d e(y) y G=n, @) y g=n,
—0y9_ 9 1 19— 3 1
0 3 27 9\9 6)7 __<y<_ —<g<00 27+9\9 6y _oo<y<— 0<g<_
(6—0—6y)? 27752 (6+19-6y)° 2 8
-1 2 Y 2<y<w 0<g<x
1+y/2
-2 1 VT+2y-1 Loy 0<g<e
2
6324316+ 16y 3 5 6%2-36+16y 3 I
) 3 — 9 —S<y<ow 0<gG<2y2 —— 9 —=<y<0 2\V2<G<>
V3+19+24y 8 V3-\9+24y 8
2 1 1
n © gp=7'+3,y='re7,g=e T——<y<®,0<G<e;——<y<0,e<gG<>
e e
(90) and (91) is that these quantities have a finite value in the n>d-3 1—-% y—-xn @—o-%(93)
quasilinear limit discussed above (as seen in [30] they also
have a finite value in the small-scale limit, associated with n<d-3 T—-%, yo0, @—+®. (94)

the highly nonlinear regime).

For small integer values of n and d we can obtain explicit
expressions for the solution of the implicit system [Egs. (88)
and (89)], by solving for G(y) and substituting into ¢(G). We
give in Table IV our results for a few such cases. Note that
from the meaning of the variable G as the overdensity 7,
within the radius r for the spherical saddle point, see Eq.
(79), ¢(y) is a priori determined by Egs. (88) and (89) by
letting G vary over the range 0<G< . For the cases {n
=-1, d=2} and {n=-2, d=1} we obtain a generating func-
tion ¢(y) that shows a singularity y, on the negative real axis,
with y,=—2 or —1/2, and the range y >y, corresponds to the
full range G>0. In the complex plane, there is usually a
branch cut for y<<y, or a pole at y,. For the cases {n=0, d
=3} and {n=-2, d=3} it happens that the function y(G) is no
longer monotonic over 0 <G < so that the inverse G(y) is
bivaluate and ¢(y) shows two branches. We show in columns
3-5 of Table IV the quasilinear branch that contains the point
{y=0, G=1, ¢=0} and corresponds to moderate density fluc-
tuations. Columns 6-8 show the second branch that corre-
sponds to large fluctuations (very low densities, 0<¢G
<1/8, for {n=0, d=3}; very high densities, 22 <G <o, for
{n=-2, d=3}).

For the general case, the behavior of the cumulant gener-
ating function ¢(y) defined by implicit system (81) and the
presence of singularities can be obtained from the asymptotic
behaviors at large and small overdensities G, using Egs.
(87)—(89). For large densities we obtain

o Mg(nﬁ—d)/d,

dGr+3)d)
g 2

G— 4T~ —

Nd(d—n—3)[ ~2y )

(n+3)/(n+3-d)
2 d(n+3)

Thus, we have two possible behaviors for G— +%,

As explained in Sec. IV A 2 and Table III, the saddle-point
approach studied here only exactly applies to n<d-3 as
shocks form for n>d-3. However, we mention the case n
>d-3 in Eq. (93) because this method should still provide a
reasonable approximation for d-3<n<d-2. The case
n=d-3 shows an intermediate behavior, as in the limit G
— 4% we obtain y——d?/2, and ¢——1 if d=1 or ¢— —o0 if
d>1. Thus it is closer to the case n>d—3. Then, we can see
that for n=d-3 larger densities are associated with more
negative y and ¢ and the function ¢(y) is regular and mono-
tonically increasing over |—,0] (or ]-d?/2,0]). This be-
havior is shown by the case {n=0, d=3} in Fig. 3. For n
<d-3, since from Eq. (84) we have y=0 at G=1, the limit
y— 07 for large densities implies that the function y(G) is not
monotonic over G e [1,+%[ and shows a minimum y,<0 at
some value G,>1. Around this point we have y—y (G
—G,)?. This gives rise to a square-root singularity \y—y, for
the function ¢(y), which shows two branches going from this
point. A first branch goes through the point {y=0, ¢=0}, it is
the branch associated with moderate fluctuations, below G,
that is most relevant in the quasilinear limit. The second
branch is associated with large overdensities above G,. This
behavior is shown by the case {n=-2, d=3} in Fig. 3.
For low densities we obtain

N_d(n+1)

T~ dg(n+1)/(2d), 5

g —0: g(n+1—d)/d’

(de(d—n—l){ -2y (95)

(n+1)/(n+1-d)
2 dn+1)

Since we assumed n <<d-2, so that the linear variance o'zﬁL is
well defined, we have n+1—-d<<-1 and this gives rise to the
two behaviors,
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FIG. 3. (Color online) The density cumulant generating function
¢(y) in dimension d=3 for the power indices n=0 (solid line) and
n=-2 (dashed line), from rows 2 and 5 of Table IV. In both cases
there is a singularity on the real axis, with y,=3/2 for n=0 and
vy=—3/8 for n=-2. The branch that runs through the origin is as-
sociated with moderate density fluctuations and is the relevant one
for expansion (64) in terms of cumulants at leading order in the
quasilinear limit.

n<-1:. 7—+o, ¢ —+ >, (96)

y*>+00’

n>-1:. 7—0" y—-o, ¢—0" (97)
Thus, for n<-1 the function ¢(y) is regular and monotoni-
cally increasing over [0,+[ (case {n=-2, d=3} in Fig. 3)
while for n> -1 it shows a square-root singularity at some
finite value y,>0, associated with an underdensity G,<1,
from which two branches leave (case {n=0, d=3} in Fig. 3).

In the large-dimension limit, d —c°, we obtain from Eqgs.
(73) and (85), F(5;)=e’ and 7=-35;. This gives the para-
metric representation of ¢(y) shown in the last row of Table
IV. Since 0 <G <o corresponds to —o0<< 7<% and y(7) has
a minimum at 7,=—1 this generating function ¢(y) shows
two branches. The comparison with Appendix A of [39]
shows that in the quasilinear limit this leads to a log-normal
distribution P(7,) (contrary to some statistical models, used
to describe fully developed turbulence, this is not related to
some underlying multiplicative cascade process). Note that
the dependence of ¢(y) and P(7,) on n disappears in this
limit d — e, even though the density profile of the associated
saddle point keeps a dependence on n (see last row of Table
1).

As noticed in [18], it happens that in the case {n=-2, d
=1} the quasilinear result shown in the fourth row in Table
IV actually gives the exact cumulant generating function de-
fined as @(y)=—2S,(-y)"/p!, with S[,=<77§’)C/<773)(C”_1). Note
that for the quasilinear limit we defined ¢(y) in Eq. (64)
using o%u instead of (7). in the coefficients S,, which is
only equivalent at leading order. In this case {n=-2, d=1}
we actually have the exact equality (7]%)5=0%L (see [18]).
For generic cases we expect the exact generatirng function
@(y) and the variance (nf)c to deviate at small scales or late
times from their quasilinear limits ¢(y) and O%;Lr.
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FIG. 4. (Color online) The Legendre transformation (82) of the
curve —7%(G)/2, which gives the generating function ¢(y). The
first-contact line yG+c, of fixed slope y and height ¢ decreasing
from +o, with the curve —72(G)/2, intersects the vertical axis at
(0,—¢) (i.e., for c=—¢). We show the cases n=0 and n=-2 in three
dimensions.

We display in Fig. 3 the cumulant generating function
¢(y) that we obtain in dimension d=3 for the two indices
n=0 and n=-2. This provides an illustration of all the be-
haviors [Egs. (93)-(97)]. The appearance of these singular
behaviors can also be seen from the geometrical construction
of Legendre transform (82), which we show in Fig. 4 for
these three-dimensional cases, n=0 and n=-2. For a given y,
—¢ is obtained as the intercept on the vertical axis of the
first-contact straight line yG+c, of slope y, with the curve
—7(G)/2, decreasing its height ¢ from +o%. Thus, Legendre
transform (82) follows the concave hull of the function
—7(G)/2 and it is regular if the latter is concave over 0
< G< . Note that this is obviously the case in the linear
regime where 7=1-G.

For n=0 we have 70)=0 [the curve —7(G)/2 shows a
steep up-turn at very low G in Fig. 4] so that for y>0 the
global minimum is 7=0: the point in the range G, <G<1
with a tangent of slope y>0 is only a local minimum and
there is a local maximum in the range 0 <G <g,. The local
minimum corresponds to the regular branch in Fig. 3 and
Table IV, which runs through ¢(0)=0, while the local maxi-
mum corresponds to the second branch in Fig. 3 and Table
IV. For n=-2 we have 7(G)>«G'? at large overdensities,
from Eq. (92). Then, for y,<y<0 we again have a local
minimum, with 1<G<g,, and a local maximum, with G
>G..

In the quasilinear limit, o5, — 0, such large density fluc-
tuations are exponentially suppressed by a term of order
6‘72/ (2‘73&,), as seen in Eq. (99) below, so that it is sufficient to
define the generating function by the branch that runs
through the origin.

4. Probability distribution P(n,)

Finally, from the cumulant generating function ¢(y) we
obtain through an inverse Laplace transform the probability
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distribution P(7,) in the quasilinear limit. Using Egs. (60)
and (63), we have

+i® dy
’P(ﬂr)=fA B

- e
2mios
Lr

[y m—<p(y)]/<r§b. (98)

It is best to compute integral (98) exactly, using the branch of
¢(y) that runs through ¢(y)=0 in case this function is mul-
tivalued (then it only applies to some range of overdensities
7, around unity). However, in the quasilinear limit at fixed
7,, it is again possible to evaluate the distribution P(7,) from
a steepest-descent method. The saddle point of the exponent
in Eq. (98) is given by 7,=¢'(y). On the other hand, from
Eq. (81) we have ¢’(y)=G, whence G=7,. Therefore, as ex-
pected the probability distribution P(7,) at point 7, is gov-
erned by the saddle point described in Sec. IV A 2 such that
its overdensity G is equal to 7,, and we obtain from Egs. (81)
and (79),

2 2
Ply,) ~ ey ) e—&iq/(ZU,qu). (99)

Thus, in the saddle-point approximation associated with the
quasilinear limit there is a precise correspondence between
the overdensity 7, and its Laplace conjugate y, and the vari-
able 7 expresses the Gaussian weight of the initial velocity
(or linear density contrast) as shown by Eq. (99). The non-
trivial relation 7{(7,) describes both evolution (72) of the den-
sity of a Lagrangian region, which only depends on the di-
mension d, and the effect [Egs. (79) and (85)], of the change
of size from ¢ to r, which involves the initial power-
spectrum index n through the dependence of initial power on
scale. In particular, for power-law power spectra (18), using
Eq. (87), Eq. (99) reads as

2

2 UZ&Lr

( (n+1)/(2d) (n+3)/(2d))2

InP(n,) ~ - 7, -,

s = 0:

(100)

In the large dimensional limit, d—, we have seen that
7(75,)=—=In(7,) (last row of Table IV), whence

In*(7,)

205

Lr

d—w», g5 —0: InP(y)~- (101)

Note however that Egs. (100) and (101) only hold for densi-
ties 7, such that saddle point (76) has not formed shocks yet.
As discussed in Sec. IV A 2 and summarized in Table III,
this implies n<d-3 and it gives a lower bound for 7, if n
>-2. These lower bounds are given by the last column in
Table V and they will be obtained in Sec. V B below.

As seen from last expression (99), the tails of the prob-
ability distribution P(7,) are simply governed at leading or-

der by the initial Gaussian weight e‘iq/ (2”?&(,) of the associ-
ated initial fluctuation &;, at the Lagrangian scale g. In fact,
Eq. (99) could be directly obtained from a Lagrange multi-
plier method, without introducing the generating function
¢(y). Indeed, in the rare-event limit we may write
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TABLE V. Asymptotic behavior of the probability distribution
P(7,) in the quasilinear regime o5, —0 (i.e., t—0 or r—), for
the initial conditions of Table I. The last column shows the range of
overdensities 7, where these results apply. If the lower threshold is
not zero [i.e., —2<n=d-3, (see Table III)], it means that the
spherical saddle point forms shocks for lower densities.

n d 1n7)(77r) -
e an
0 3 52\ -n%? 7,>(2/3)3
r 12
-1 2 —pl-n )? n>1/4
" oo—12 12y
-2 ! 5200 2= n") 7>0
5 16 16ya
-2 3 _@(77)‘ /A ) 7]r>0
(2r2)(n+3)/2
n o - 2.2 1ﬂ2(77r)
~1
rare events:  P(7) ~ max  e"12eCy o

{olallmlo 1=t
(102)

That is, P(7) is governed by the maximum of the Gaussian
-1

weight ¢~ (9CL %)/ gubject to the constraint 7,[ & =7 (as-

suming there are no degenerate maxima). Then, we can ob-

tain this maximum by minimizing the action S[&L]/a%L of

Eq. (66), where y plays the role of a Lagrange multiplier.
This gives saddle point (76), and the amplitude &;, and the
radius ¢ are directly obtained from the constraint 7=F(4;,),
as in Eq. (72). Then, we do not need the explicit expression
of the Lagrange multiplier y, as this is sufficient to obtain the
last expression of asymptotic tail (99). Nevertheless, it is
useful to introduce the generating function ¢(y), which
makes it clear that the Lagrange multiplier y is also the
Laplace conjugate of the nonlinear overdensity # as in Eq.
(59) since it is also of interest by itself, as it yields the den-
sity cumulants through expansion (64). Moreover, it is easier
to check through the action S§ and the generating function
¢(y) that path integral (65) is indeed dominated by a saddle
point. On the other hand, as noticed above, in the quasilinear
regime it is best to compute the distribution P(7,) from in-
tegral (98), expressed in terms of ¢(y), as the property
¢©(0)=0 automatically ensures that the probability distribu-
tion is properly normalized to unity (in the case of the gravi-
tational dynamics this has been seen to give a good match
with numerical results [39,26]).

We can note that at this order the nonlinear distribution
P(7,) could be described by a spherical-dynamics model,
where one makes the approximation P(%,)d7,
=P (8,)d6;, with 5,=F(6;,) and P, is the initial distribu-
tion of the linear density contrast, as developed for instance
in [55] for the collisionless gravitational dynamics. Note that
such a phenomenological model can be readily extended to
non-Gaussian initial conditions. However, one needs the
steepest-descent framework described in the previous sec-
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FIG. 5. (Color online) The probability distribution P(7,) in the
quasilinear limit from Eq. (98). We show the cases n=0 and n
=-2 in three dimensions, for a linear variance O%L =0.5.

tions to justify behavior (99) for the rare-event tails. More-
over, in cases where collisions (shocks) take place, such a
phenomenological model becomes ambiguous, while the
saddle-point approach remains valid and allows to derive
exact results, as we shall describe in Sec. V B below.

We show in Table V asymptotic behaviors (100) obtained
for the initial conditions given in Table I, as well as the lower
bound 7, below which saddle point (76) forms shocks. The
value of 7, will be derived in Sec. V below, where we take
into account shocks. Note that it is not related to the value G
where the cumulant generating function is singular, which
was given in Table IV.

We show the distribution P(7,) in Fig. 5 for a linear vari-
ance a'(zer=0.5 and the cases n=0 and n=-2 in d=3. For
finite o5 it is better to use integral (98), rather than
asymptotic result (99), as it ensures that the distribution is
normalized to unity and captures the asymmetry of the dis-
tribution with the shift of its peak. Note that in the case {n
=-2, d=1} inverse Laplace transform (98) of the quasilinear
generating function given in the fourth row of Table IV gives
the explicit expression

7 o,
T - )P )

P(n,) = [

JZWUﬁ
.

(103)

Again, as seen in [18], it happens that in this case result
(103) is actually exact. In generic cases, deviations from the
quasilinear limiting distribution should appear at small scales
and late times.

From the geometrical construction described in Fig. 4 we
can see that singularities for the function ¢(y) occur at in-
flexion points of the curve —72(G)/2. In particular, in agree-
ment with the analysis of Egs. (92)—(94), at large densities a
singularity appears as soon as 72/G—0 for G— o, which
implies that —7%(G)/2 is no longer concave at large G. From
Eq. (99) this simply corresponds to a subexponential large-

density tail of the form ~e~ ™ with a<1. Then, it is clear
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that integral (59) is divergent for y <0 so that the exact cu-
mulant generating function has a branch cut on the negative
real axis, y <0, even though the cumulants of all orders may
be finite. In this case, the singularity at y,<<0 and the two
branches observed on y, <y <0 are related to this branch cut
and to this subexponential large-density tail.

For the low-density tail, this construction shows that
when 7(G) and 7/(G) remain finite for G—0, a singularity
appears on the positive real axis, y,>0, or ¢(y) is restricted
to a finite range y <y,. Thus, singularities on the positive real
axis are generically associated with distributions that do not
vanish in the limit 7, — 0.

In any case, in the quasilinear limit the large-fluctuation
regime associated with the second branch of ¢(y) is irrel-
evant, as it is exponentially suppressed by a factor of the

form e1/75, [see Eq. (99)]. Therefore, we only plot in Fig. 5
the range associated with the quasilinear branch of ¢(y), that
is, 17,<2\2 for n=-2 (see Table IV). For n=0, this would
require 7,>>1/8, but as shown in Table V and explained in
Sec. VB 7 below, shocks appear before this threshold, as
soon as 7,<(2/3)3, below which Eq. (100) is no longer
valid. Therefore, in the case {n=0, d=3}, we only plot result
(98), obtained from the quasilinear generating function,
above this lower-density bound, 7,>(2/3)3. In the limit
o5 —0 the weight associated with such low-density regions

decays exponentially as ™! "%u (disregarding the numerical
factor), but at o‘f;L =0.5 this region is already non-negligible.
Note that the upt{lrn at low density shown in Fig. 5 is not
necessarily a signature of the breakdown of the quasilinear
limit in this domain at o%b_=0.5. Indeed, as discussed in Sec.
V B 7, the distribution P(7,) does not decay exponentially at
low density, see also Table IX, and it may even grow as a
power law. As shown in [30], this is for instance what hap-
pens for the case {n=0, d=1}, where at low density the prob-
ability distribution shows an inverse square root tail, P(7,)
x /N7,

B. Velocity divergence (i.e., spherical velocity increment)

We now consider the probability distribution, P(0,), of
the mean velocity divergence ®,, defined in Eq. (21), that is
also the velocity increment over distance 2r averaged over
all directions (up to a normalization factor). Following the
method described in Sec. IV A for the spherical overdensity
7,, we can also obtain the quasilinear limit of P(®,) by a
steepest-descent approach. Thus, we again define the mo-
ment and cumulant generating functions W(y) and ¢(y) as in
Egs. (59)—(64), which can be expressed as path integral (65)
with an action S[&;] as in Eq. (66), where the nonlinear
functional 7,[ 8, ] is replaced by ®,[ 8, ]. The action still being
spherically symmetric, we can also look for a spherical
saddle point. If particles on the sphere S have not been
shocked yet they have kept their initial velocity u, so that @,
only depends on the initial radial velocity u, of the particles
at the Lagrangian radius ¢ that have moved to radius r at
time ¢. Then, by the same reasoning as for the overdensity,
we obtain as expected the same profile Eq. (76) for the
saddle point, but a different function F(&;,). Indeed, since
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the radii ¢ and r are related by r=q+1uy, we have from Eq.
21)
d d
@,:——tu,(t):——tuoq:d(g—l). (104)
r r r

Note that Eq. (104) shows that for spherical dynamics the
quantity 0, obeys

0.=-d.

r

(105)

This lower bound corresponds to very fast expansion so that
the particles observed at radius r come from the center q
=0. Note that this requires the initial velocity field to be
singular at the origin, whence n>—1, in agreement with ex-
ponential fall-off (129) and (134), obtained at low densities
for n<-1, as shown in Sec. V below. In such cases, where
rarefaction regions can appear (i.e., truly empty regions), it
may happen that the cell of radius r is within a larger empty
domain so that there are no particles on the sphere S. How-
ever, in the quasilinear limit, where we consider small values
,|» we do not consider this case. Next, from Eq. (30) the
linear density contrast is given by

t
5Lq=-dﬂ”i=d<1—f), (106)
q q
whence
0,= .7-'(5Lq) with .7-'(6Lq) =— (107)
ey
d

Again, since the function F simply describes the spherical
Burgers dynamics it only depends on the dimension d and
not on the initial power spectrum. Then, we obtain expres-
sion (78) with this new function F, and we can define the
associated variables 7 and G as in Eq. (79) so that the cumu-
lant generating function ¢(y) is given by relations (81) and
(82). The spherical saddle point being identical to the one
obtained in Sec. IV A 2, profile (83) still applies for power-
law power spectra, as well as Figs. 1 and 2. In particular, if
n>d-3 shocks appear as soon as t# 0 so that this saddle
point is no longer exact in such cases. As in Sec. IV A we
shall not consider the modifications that appear in such
cases, as they should remain small in the quasilinear regime
(with d-3<n<d-2), and we focus on cases such that n
<d-3.

Close to the origin, since by symmetry we have (u)=0,
whence (0,)=0, we always have [compare with Eq. (84)]

2
Y

~ deo~—2,

y~7 and ¢ 5

(108)

7—0, y—=0 G~-7

and keeping only these low-order terms gives back the linear
Gaussian of variance 02 For power-law initial power spec-

tra (6) we obtain from Eqs (79) and (104),

r —(n+3)/2 ® (n+3)/2
T:—(SLq(c—]) =—5Lq<l+j) ,  (109)

which leads to
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(n+1)/2 (n+3)/2
dg):d(ug) —d(l+%) . (110)

and to the parametric representation of ¢(y),

d2 |: ( g>n+l ( g)n+2
@:—dy—; n 1+E -2(n+1) 1+Z +(n+2)
g n+3
><<1+—) ]
d

~ 6_1(1 g>—1|:( 1)<1 g>n+1 2( 2)<1 g>n+2
v==o\ 1+ n+ +5) -2+ s

n+3

+(n+3)<1+§) ]

We can see that, contrary to the Egs. (88) and (89) asso-
ciated with the density contrast, the dependence on d of the
system [Eqgs. (111) and (112)] simplifies as d~2¢(dy) no
longer depends on the dimension d. This implies for the
probability distribution the scaling

(111)

(112)

1 ®r O%Lr
,Pd((ar;o'zgu) = 37’1(; ; ?> ,

where we noted P,(0,; 0'2 ) the quasilinear probability den-
sity of ©, in dimension d when the linear variance is 0'2
Thus, in the quasilinear limit the change of dimension 1s
fully absorbed by a rescaling of the velocity divergence 0,
and of the linear variance o'fs . Therefore, contrary to the
case of the overdensity studied in Sec. IV A, the properties
of ¢(y) and P(0,), such as the presence of singularities and
subexponential tails, only depend on 7 and not on the dimen-
sion d.

Expanding near the origin, we obtain for the third and
fourth-order cumulants in the quasilinear limit,

(113)

(0)). 1
o5, —0: S3= (0% "; , (114)
(©))c 3(n+1)(Tn+ 9)
Sy= 0" y2 (115)

As discussed below [Eq. (21)] this also gives the cumulants
associated with the third- and fourth-order spherical velocity
structure functions in the quasilinear limit. As for Egs. (90)
and (91), these quantities are not the standard skewness and
kurtosis, and the powers in the denominators are such that
they have a finite nonzero quasilinear limit.

For integer values of n we can also derive explicit solu-
tions to Egs. (111) and (112), which we show in Table VI. As
for the density studied in Sec. IV A 3, the quasilinear gener-
ating function ¢(y) can show two branches when the func-
tion y(G) is not monotonic over G € |—d,+o[ [the variable G
now covers the range ]—d,+o[, as seen from Eq. (105)].
This occurs for n=0, shown in the second row in Table VI,
while for n=-1 and n=-2 there is only one branch.

In dimension d=1 we have from Egs. (104) and (72),
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TABLE VI. The cumulant generating function ¢(y) of the velocity divergence ©,, in the quasilinear limit o 5, — 0, for integer values of
n and arbitrary dimension d, where explicit solutions of the system [Eq. (111) and (112)] can be obtained. Columns 2—4 show the quasilinear
branch, and the associated range of {y,G} that contains the point {0,0}. Columns 5-7 show the second branch, associated with very rare
events, that appears in some cases (here only for n=0). The last row shows the infinite-dimensional limit, d — %, which no longer depends

on n and corresponds to the Gaussian.

n o(y) y G=0, @(y) y G=0,
2 2 3n 2 2 3n
0 d__ﬂ_d_(]_@) —Oo<y<é —g<g<00 d_ dy d (1_6__)7) _(;1<y<_ _d<g<__
27 3 27 d 6 3 27 3 27 d 2
¥
-1 —3 —o<y<d -d<g<wx
d
=2 —dz—dy+d2\/1+%y —ySy<® —d<g<e
¥
d=0 _E —o<ly<® —n<G<®
q On the other hand, in the limit of large dimension, d
d=1: 0,= P l=7n-1, (116) — o0, we obtain G(7)=—7 which gives back the linear Gauss-

so that the distributions P;(7,) and P;(0,) are identical up to
a shift of unity. Then, we can check that the results shown in
Tables IV and VI for the case {n=-2, d=1} are consistent. In
particular, the generating function given in the fourth row of
Table VI yields the probability distribution

® )—3/2

1
n=-2: P®,=—<—+1
©)= o |

Xexp
5Lr

@ \/®f 1 ! 2 (117)
|
207 d [0,
—+1
d

We can check that this agrees with relation (116) and Eq.
(103) for d=1. Moreover, in dimension d=1 result (117)
again happens to be exact [18].

For n=—1 we simply obtain the Gaussian (third row in
Table VI)

2

e)=-%, PO)=——
\'2770'5Lr

22/ 2
n=-1: e 9%,

(118)

Thus, the effects of nonlinear evolution (107) and of the
change in scale ¢—r (encoded in the change from F to G)
compensate in such a way that at leading order in the quasi-
linear limit the cumulants (®%). vanish, whence (O7),.
< 0'2 P for o5, —0 and p=3, in agreement with Egs.
(114) and (115). However note that distribution (118) differs
from the linear Gaussian in the sense that 0, is restricted to
0,.=-d, from Eq. (105). Of course, the weight associated
with this lower bound becomes exponentially small in the
quasilinear limit so that it cannot be seen in the leading-order
value of the cumulants (®7)., whence in the quasilinear gen-
erating function ¢(y).

ian of Eq. (118), again in agreement with Egs. (114) and
(115). However, contrary to distribution (118) associated
with n=-1 at finite d, in the limit d— % the Gaussian ex-
tends down to — since lower bound (105) is repelled to —.
Note that this was not the case for the overdensity 7,, where
the probability distribution did not tend to the Gaussian but
to a lognormal distribution for d— [see the last row in
Table IV and Egs. (90) and (91)].

We show in Fig. 6 the quasilinear cumulant generating
function ¢(y), obtained in three dimensions for n=0 and n
=-2. Although there is a singularity on the real axis for both
cases, there is only one branch for n=-2.

R T T T

FIG. 6. (Color online) The cumulant generating function ¢(y)
for the velocity divergence ©,, in dimension d=3 for the power
indices n=0 (solid line) and n=-2 (dashed line), from rows 2 and 4
of Table VI. In both cases there is a singularity on the real axis, with
yy=1/2 for n=0 and y;=-3/2 for n=-2, but only one branch for
n=-2. The branch that runs through the origin is associated with
moderate velocity fluctuations and is the relevant one for the expan-
sion in terms of cumulants in the quasilinear limit.
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TABLE VII. Asymptotic behavior of the probability distribution
P(0,) in the quasilinear regime, for a few integer values of n and d,
using the normalization of Table I for the initial conditions. The last
column shows the range of spherical velocity increment ®, where
these results apply. If the lower threshold is not equal to —d (i.e.,

—-2<n<d-3), it means that the spherical saddle point forms
shocks for lower 0,.
n d InP(®,) 0,
3 0 \12 o \32]2
0o 3 -r—2<1+—’ ~(1e= 0,>-1
2t 3 3
2
-1 2 - r_2 2 0,>-1
8t
21 - Al1+0) 12— (140)7F 6> -1
5 [6) -1/2 ©) 1/2 |2
2 3 __r2 (1+—’) -1+ 0,>-3
8t 3 3
,2)(1+3)/2
n . _ L@y

24 r

Next, the quasilinear probability distribution P(®,) is ob-
tained from the cumulant generating function ¢(y) by an
inverse Laplace transform, as in Eq. (98). In the quasilinear
limit, as for the overdensity 7,, it obeys asymptotic behavior
(99). Then, using Eq. (110) we obtain

_d2 @ (n+1)/2
InP(0,) ~— [(1+—’)
205Lr d

o5 = 0:

( 0 )(n+3)/2 2
-{1+— 119
P (119)
and in the large dimensional limit, where 7=—0,,
@2
d—®», o5 —0: InPO)~-—" (120
Lr 20.5

Lr

which only hold for n<d-3 and above a low-0, threshold if
n>-2 (see Table III). Note that Eq. (119) may be directly
obtained from asymptotic tail (100) derived for the density
distribution, P(7,), by substituting

0,\¢
= (1 * d) '
This relation follows from Egs. (72) and (104) that express
both 7, and O, in terms of the Lagrangian radius ¢ of the
saddle point so that there is a unique correspondence be-
tween 7, and 0O, for these spherical saddle points.

We show in Table VII asymptotic behaviors (119) ob-
tained for the initial conditions given in Table I, as well as
the lower bound ®,, below which the saddle point (76) forms
shocks, which will be derived in Sec. V below where we take
into account shocks. Again, the value (and the existence) of

0,=d(n"-1), (121)
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FIG. 7. (Color online) The probability distribution P(®,) of the
velocity divergence ©, (spherical velocity increment) in the quasi-
linear limit. We show the cases n=0 and n=-2 in three dimensions,
for a linear variance 025“=0.5.

. 18 not related to the value (and the existence) of G, where
the cumulant generating function is singular, which was
given in Table VI.

We show in Fig. 7 our results for P(0,) for the cases n
=0 and n=-2 in three dimensions, for a linear variance
U%L"ZO.S, as in Fig. 5. Again, we only plot the distribution
over the range associated with the quasilinear branch of ¢(y).
For n=-2 this actually covers the whole range 0,>—d, but
for n=0 this corresponds to ®,>-d/3 (see Table VI). Note
that in the latter case this lower bound happens to coincide
with the lower bound ©, where shocks appear (for d=3).
The comparison between Figs. 5 and 7 shows that the distri-
bution of the velocity divergence ®, remains closer to the
Gaussian than the distribution of the overdensity #,. This can
also be seen from the fact that the singularities y, are farther
from the origin y=0 (compare Tables IV and VI and Figs. 3
and 6). On the other hand, in agreement with Eq. (114), we
can see that the skewness has opposite signs for n=0 and
n=-2, as the peak of the distribution shifts to either side of
0,=0, while the skewness of the density was always positive
for n<<d-2, see Eq. (90), which covers the range where 02%

is well defined.

V. ASYMPTOTIC TAILS

The results obtained in Sec. V applied to the quasilinear
limit, o5 = 0, for the case n<d-3, so that o5 is well
defined and shocks only appear after a finite time (if d—3
<n<d-2 shocks appear as soon as t # 0 but Ty is still well
defined and these results should provide a reasonable ap-
proximation). We now consider the limit of rare events,
which is very large density and velocity fluctuations at fixed
linear variance 0'2 or at fixed 02 if a% is divergent. Thus
we study the talls of the probabﬂlty dlstrlbutlons P(7,) and
P(0,), for any value of o5 or oy . Asin Sec. IV we can
use a steepest-descent approach and look for the minimum of
the action S, defined as in Eq. (66). This will give the tails of
the probability distribution through Eq. (99).
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A. Saddle point without shocks

1. Rare density fluctuations

For n<d-3 we can use the same action S[§;] as in Eq.
(66) and we obtain the same saddle point defined by Egs.
(76) and (82) provided no shocks have formed. As discussed
in Sec. IV A 2, this constraint is satisfied for overdensities if
n=d-3 and for underdensities if —3 <n=-2. Therefore, in
such cases Eq. (99) remains valid, where 7(7,) is still given
by Eq. (87), provided the saddle-point approximation is jus-
tified. Thus, we must show that as we consider very large
density fluctuations the Laplace transform W(y) and the dis-
tribution P(7,) are dominated by an increasingly narrow re-
gion around this saddle point. We no longer have a fixed
action S[ ;] multiplied by a prefactor that goes to infinity, as
was the case in the quasilinear regime for Eq. (65), with
1/0'2 — o, Therefore, the analysis is more complicated as
we should study the Hessian of the action at the saddle point,
which requires second-order perturbation theory around this
saddle point, taking into account angular degrees of freedom.
Here we shall simply show that the steepest-descent approxi-
mation is well justified for W(y) [i.e., ¢(y)] with respect to
the family of initial states [Egs. (76) and (77)], parameterized
by the overdensity G within radius r.

In this subspace, the action S[&;] is an ordinary function
S(G), given by Eq. (80) as S(G)=yG+7(G)?/2. Thus, at the
saddle point the first and second derivative read as

as_ &S & (7(9)2)
dg " dG* dG*\ 2

Let us first consider the case of large underdensities, G— 0,
with =3 <n<-2. Then, from Eq. (87) we have

@N(n+1)(n+1-d)
dg? 2

(122)

g(n+1)/d—2

G—0: (123)

Then, over this subspace, disregarding prefactors associated
with changes of variables, we write the analog of Eq. (65) as

N, f AGe59', (124)

and expanding the action around the saddle point G, defined
by the condition dS/dG=0, we find that only values suffi-
ciently close to G, contribute to the integral, with

1

1G-G|~ 50 ~ gl-lmi2d) (125)
whence (since -3 <n<-2)
G.— 0: wé—g| ~ g lmed g, (126)

Since S(G) behaves as a power law, Eq. (126) implies that
higher-order terms beyond the Gaussian around G, are sub-
dominant. Thus, at large positive y, which corresponds to
G.—0, see Eq. (96), the Laplace transform ¢(y) is domi-
nated by its saddle point [if we only consider the subspace
described by profile (76)]. Then, assuming that this remains
true when we take into account other degrees of freedom,
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and that there is no deeper minimum associated with strong
deviations from spherical symmetry, we recover at large y
behavior (95) obtained in Sec. IV A 3 where we studied the
quasilinear regime. Next, the distribution P(7,) is still given
by inverse Laplace transform (98), and it only remains to
show that this integral is again dominated by its saddle point,
in the limit 7,—0. As noticed in Sec. IV A 4, the saddle
point y, of the exponential satisfies 7,=¢’(y.), whence 7,
=@, where G, is related to y, through Legendre transforma-
tion (81). Thus, in the limit 7,—0 we obtain y,— +% and
from the previous results behavior (95). Next, expanding the
exponential around y,., we find that contributions to P(7,)
come from the range

1 I=(n+1)/[2(n+1- d)]

ly =y ~ ==~y (127)
V=¢"(ye)
where we used large-y behavior (95). This yields
Y, s 0 |y - yc| - y;(n+1)/[2(n+1—d)] -0, (]28)
Ve

which again ensures that integral (98) is dominated by the
Gaussian integration around its saddle point in the limit 7,
— 0. Therefore, the steepest-descent approximation is legiti-
mate at very low densities, whatever the value of a5, and
we recover rare-event tail (99). As in Eq. (100), this yields
the low-density tail

7, — 0. P(y,) ~ o a5 ),
(129)

-3<n=s-2,

We can apply the same procedure for large overdensities,
n,— +%. Here, a subtlety arises from the fact that for n<d
-3 large densities are associated with the second branch [Eq.
(94)] of @(y) discussed in Sec. IV A 3. As recalled in Sec.
IV A 4, this simply corresponds to cases where the high-
density tail of the distribution P(7,) shows a subexponential

decay, such as ¢ with @< 1. From definition (59) we can
see at once that in such cases the Laplace transform W(y),
whence ¢(y), diverge for negative y: they generically have a
branch cut along the negative real axis. Then, the saddle
point in path integral (65) becomes a local maximum but one
can still apply the steepest-descent method, using an appro-
priate deformation of the integration contours in the complex
plane. This is discussed in details in Sec. 3.6 and Appendixes
A and B of [39]; hence we do not give further comments on
this point here (see also the chapter on instanton contribu-
tions in [44]). Then, as for underdensities, we can check that
for large overdensities the contributions to ¢(y) come from
an increasingly narrow range of G, when we restrict to the
subspace parameterized by profile (76), as in Eq. (124).
Thus, using again Eq. (87), we now find that the range of
overdensities that contribute to ¢(y) behaves as

|g - gc|
.
so that ¢(y) is still governed by the saddle point (assuming

there are no larger contributions associated with strong de-
viations from spherical symmetry), and we recover behavior

~ gD g

G, — +o0: (130)
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TABLE VIIIL The tails of the distributions P(7,) and P(0,) for a few integer values of n and d where the
relevant saddle point is regular (i.e., does not induce shocks), from Egs. (129) and (132). The initial condi-
tions are those given in Table 1, i.e., with the same normalization). Cases marked as “shock” correspond to
saddle points that give rise to shocks so that the normalization factors in Egs. (129), (132), (135), and (136),
are no longer valid. They are analyzed in Sec. V B (this includes the case {n=0,d=1} for both large and
small densities). For d— o the expressions given at low densities and velocity divergences only hold for n

=-2 (n>-2 gives rise to shocks).

n d InP(n,) for n,—»

In P(7,) for 7,—0

InP(0,) for ®,—c InP(O,) for ©,——-d

0 3 -5,/ (212) Shock -rP@?/(541) Shock
-1 2 -2y, (21%) Shock -r0?/(87%) Shock
-2 1 —ry,/ (21%) —r/ (2%, —-r0,/(21%) —r/[272(1+0,)]
-2 3 =5rR1(8) -5r/(8827) -5r0,/(241%) —15//[82(3+0,)]
2\ (n+3)/2

(2r2)(n+3)/2 (2r2)(n+3)/2 (2r2)(n+3)/2 (2}’ ) 5.

n = 2 _ 2 ; _ W) a2 I e A— Y T )
¥ In%(7, 7 In?(7,) if n=-2 7 (G 22 PR

(94). Then, the range of y that contributes to the large-
density tail is

ly -yl

Iyl

Therefore, the steepest-descent approximation is again legiti-
mate at very high densities, whatever the value of o5 and
we recover rare-event tail (99). As in Eq. (100), this yields
the high-density tail

|yc| (n+3)/[2(d-n-3)] —0.

y.—07: (131)

n< d _ 3, 7, — o0: fP( 77r) — e—d2ﬂ(fn+3)/d/(20_§b).
(132)

We can check that in the case {n=-2, d=1} both asymptotics
(129) and (132) agree with exact distribution (103).

In the large dimensional limit, d — o, we still obtain Eq.
(101), which applies to both rare overdensities and underden-
sities, but only if n=<-2 in the latter case.

In fact, the saddle-point approximation is valid as long as
we consider the limit of rare events, which corresponds ei-
ther to the quasilinear limit, o5, —0 (.., P32 o) at
fixed density #, and velocity increment ®,, or to the limit of
extreme densities, 7,— 0 or 7,— %, and extreme velocities,
0,——d or ©,—, at fixed time and scale (i.e., at finite
0'5Lr). Of course, the range of density fluctuations to which
these results apply is a priori repelled to increasingly large
fluctuations, 7,— % or n,—0, as T, 8rows (since they cor-
respond to rare events, P<<1). In such regimes, integrals
such as Eq. (65) are governed at leading order by the mini-
mum of the action S, which shows a steep dependence on the
initial conditions. This legitimates the steepest-descent ap-
proximation in these cases.

We can note that an exception to this behavior occurs
when the action happens to be singular at its minimum, that
is the initial conditions where S is close to its minimum form
a subspace of measure zero. For ordinary integrals such as
Eq. (124), this corresponds to cases where the function S(G)
is discontinuous at the point G., with S(G,) being strictly
smaller than both left and right limits, S(G,) and S(G}). This
possibility actually appears for the case of the collisionless
gravitational dynamics [56], where at large positive densities

a strong radial orbit instability appears (associated with the
extreme sensitivity of the trajectories, which actually di-
verges, as particles move through the center of the object).
This problem does not appear in the Burgers dynamics since
in any case particles that would reach the center would stick
there. Thus, the infinitesimal viscosity regularizes the dy-
namics and makes the sensitivity to nonspherical perturba-
tions finite. This well-behaved dependence on the initial con-
ditions clearly appears through the Hopf-Cole solution
recalled in Sec. II D.

If we are only interested in the exponents that appear in
expressions (129) and (132), disregarding the numerical fac-
tors and using Eq. (29) they read at leading order as

n<d-3, p,—% InP(zy,) xR

(133)

N, — 0: In ’P( 77r) o — rn+3 77(r”+1)/d/l‘2
(134)

-3<ns=-2,

We give in Table VIII the explicit expressions of tails (129)
and (132), for the initial conditions normalized as in Table I
and we mark as “shock” the cases where the saddle point
discussed above gives rise to shocks. This agrees with Table
V where we only keep the leading term for 7,—® or 7,
—0.

2. Rare velocity fluctuations

The discussion of P(7,) in the previous section directly
extends to the tails of the distribution P(®,) of the mean
divergence 0, (spherical velocity increment), defined in Eq.
(21). Thus, for the same cases as in Sec. V A 1 where the
saddle point does not form shocks, the rare-event tails are
still given at leading order by the first exponential in Eq.
(99), where 7(0®,) is given by Eq. (110), whence by Eq.
(119). This yields
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d2 (@ )n+3
<d-3, 0,—-® IhP®O,)~- —
n nP(0,) 202 \d
Lr
n+3®n+3
w0 (135)
t
and
_ 2 ® n+1
-3<n=-2, 0,—-d PO~ — <l+j)
S,
(136)
r”+3 (©) n+l
o — (l+—> . (137)
r d

In the large dimension limit we still have Eq. (120), which
holds for ®,— o« for any n, but for ®,— — only if n<-2.
We also give these results in Table VIIIL.

Note that the appearance of a second branch for ¢(y) is
not simultaneous for 7, and ®,, as noticed in Sec. IV B and
as can be seen from the comparison of Tables IV and VI
Since for spherical initial conditions 7, and ®, are related by
Eq. (121), it is clear that the subtlety associated with the
second branch of ¢(y), that is, the branch cut of the exact
Laplace transform, is only a mathematical difficulty due to a
subexponential tail but has no physical effect. Thus, in cases
where only the density quasilinear generating function ¢(y)
shows a second branch, we can first compute the high-0,. tail
of P(®,), which only involves local minima of the action
and does not require a deformation of integration contours,
and next use relation (121) to derive the high-density tail of
P(7,). More generally, as noticed in [39], in order to avoid
the complications associated with sub-exponential tails, we
can simply compute the rare-event tail of the quantity X
=77, with a small enough B so that P(X) shows a super-
exponential decay, and next derive P(7,) from P(X) through
a simple change of variable. On the other hand, we could
directly obtain Egs. (135)—(137) from Egs. (129) and (132),
by using relation (121).

B. Saddle point with shocks

1. Paraboloid construction and action S[iy]

For cases where the constraints in Egs. (129) and (132)
are not satisfied, that is when shocks cannot be ignored, we
can no longer rely on the regular saddle point of Sec. V A.
However, we can use exact solution (36), and geometrical
construction (38), to study solutions of the equations of mo-
tion that contain shocks. In particular, following the ap-
proach used in the previous sections, we can look for saddle
points of an appropriate action, which include shocks, to
obtain the tails of the distribution P(7,). However, to use Eq.
(36) it is more convenient to work with the velocity potential
i, rather than with its Laplacian, 6,=4;/t, that we used in
Sec. IV. Thus, we now write Laplace transform (59) as
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W(y) = (det Cy)"? f Dppe 1200y (138)

where 7,[ ] is now the functional that affects to the initial
condition ¢ the nonlinear overdensity 7,, built at time ¢
within the cell of radius r centered on the origin, x=0; and
C%(xl,xz) is the two-point correlation of the initial poten-
tial. Although this is no longer essential (since we do not
consider here the limit Ty, —0) we rescale the transform
W(y) in a fashion similar to Eq. (63),

V(y) = e_"g(w‘z/’()r)/az';’m, (139)

so as to obtain an action S[ 4] that is similar to Eq. (66),

2

g
St =ynluol+ — "t Cob e (140)

where Ty, is the variance of the initial radial potential ¢, at
radius r, defined in Eq. (34).

As in Sec. IV we can look for spherical saddle points.
Then, we can look for the minimum of the action S[%]
within the subspace of spherically symmetric initial condi-
tions, where ,(q) =t with g=
action to this subspace reads as

Yor -
S[qu’]zynr[lqu’]'i'TOqu{ ! Cz//(l)r (qué’ (141)
where C%r(q{ ,q5) is the radial covariance introduced in Eq.
(33).

2. Regular saddle point without shocks

Let us first check that in the case where there is no shock,
we recover from Eq. (141) the results obtained in Sec. IV. As
in Eq. (71), a saddle point of action (141) is characterized by

_y " "
lﬂOq'—Tj dq"Cy, (q' q) (142)

U‘/’O

D ¢0 qlr

Following the discussion below Eq. (73), since 7, only de-
pends on the initial velocity at the Lagrangian radius ¢, and
uoy,=—dip,/ dq, the functional differential D7,/ Dy n is zero
for ¢" # q. However, it is no longer a Dirac, 8p(g”—g), but its
first derivative, 51’)(q”—q). Indeed, from geometrical con-
struction (38), the Lagrangian radius ¢ is obtained as the
first-contact point of the paraboloid Py .(q) with the initial
potential #(q). Using the spherical symmetry this corre-
sponds to the first-contact point of the parabola P, .(¢) with
the curve ¢,, which is characterized by the two equations
(for contact and tangent slopes)

(q-1?
21

~

Yo = +eo = (143)

Then, as we change the initial potential by an infinitesimal
perturbation Ag,/, both ¢ and ¢ are modified by amounts Ac
and Ag, and second Eq. (143) gives
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1 -1

Then, since 7,=(¢/r)? as in Eq. (72), we have A7,xAg
= Ay, whence

« 8p(q" - q). (145)

7
Dllboq”
Thus, in agreement with the previous discussion, derivative
(145) vanishes for ¢” # g, but it is now the first derivative of
the Dirac distribution. Substituting into Eq. (142) gives the
linear profiles of the saddle point as

d
(IIOq’ * ;chor(ql’q)’ (146)

s
upy * ———Cy (q.9) = C, (q".q).  (147)

9q°q
where we used Eq. (32). Then, the comparison with Eq. (77)
shows that we have obtained the same spherical saddle point
as in Sec. IV A 2. This means that we recover the results of
Sec. IV in the quasilinear limit (here Ty, 0), and of Sec.
V A in the appropriate rare-event limits (7,—0 or 7,— ).
In particular, the tail of the probability distribution reads at
leading order as

-1 ~1
Cyy¥0(@2) = e—l/woql-c%r-woqz,

P(n,) ~ e~ 12%0(ar): (148)

where the exponent is evaluated at the saddle point, as in Eq.
(99) to which it is equivalent.

3. Taking shocks into account

The advantage of formulation (141) in terms of the poten-
tial ¢, is that we can now handle cases where shocks must be
taken into account. Note that this applies in particular to the
cases n=d—-2 where the variance o'2 of the linear density
contrast is divergent. To this order, we generalize the previ-
ous configuration, with a unique first-contact point between
P, (q) and ¢y,, to states where the initial potential follows
the parabola over a finite range [¢_, ¢, ], and remains below it
elsewhere. This corresponds in particular to a shock at radius
r that contains all the matter that was initially located within
Lagrangian radii g_ and g, (all this matter merging at posi-
tion r at time ). Then, the nonlinear overdensity 7, is not
modified by infinitesimal perturbations Ay, over
q €[g_,q.] (since they do not affect the first-contact pa-
rabola) and Eq. (142) implies

9+
q=0: lﬂoff dq'Cy (9,9")f(q"),  (149)
q

with some kernel f(¢’) to be determined (in the case of a
unique contact point, i.e., no shock, we have seen above in
Eq. (146) that we have f(q’) < &},(¢' —¢q,) and g_=g,). Let us
note C(,, the restriction of the kernel Cy,, (q1,9>) to the in-
terval [q .q+]. Then, since ¢,= P,L(q) over the range
[g-,q.], Eq. (149) implies over this interval,
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g-<q<gq;: P..= E%r -f, whence f= E‘Jj(l)r- P,
(150)

Moreover, substituting Eq. (149) into action (141) yields

U¢ i} 9+
S=ym,+ TOJ dq,dqxf(q,)Cy (41.92)f(q2) (151)
q_

2
O'wr a4+ _
=y + f dg1dq,P,.(a1)Cy, (a1:a)Pr(qa)  (152)
q_

2

g q4+
Por J daf(@)P, (q).
q

=y 7, + (153)

2 —

Next, since 7, and C'_w(l) only depend on ¢_ and ¢,, minimiz-
ing action (152) with respect to the height ¢ of the parabola
P, . gives

&S

N on dqld@% (91:42)Pr.c(q2) =0, (154)

whence, using Eq. (150),

9+
f dqf(q) =0. (155)
q_

Thus, in order to minimize the action S[ ] over the spheri-
cally symmetric initial conditions that show a shock at radius
r we proceed in two steps. First, the minimum of S over the
class of profiles ¢ that follow their first-contact parabola
over a finite range [¢_,q.], to be determined afterwards, is
obtained by solving Egs. (150) and (155). This gives the
kernel f and the parabola height ¢ as a function of the pa-
rameters ¢_ and ¢,. Second, substituting into action (153) we
minimize S over ¢g_ and ¢,. This provides the minimum of
action (141) over all spherical states such that the Eulerian
radius r maps to a continuous Lagrangian range [¢_,q.],
provided the saddle point obtained in this fashion remains
strictly below the parabola P,. outside of the interval
[¢_,q.], which we must check afterwards since we have not
imposed the constraint <P, . in the previous derivation. A
priori it could happen that the minimum of the action is
reached for initial configurations that touch the first-contact
parabola over disjoint regions. Then, this would be seen by
noticing that the minimum obtained through the previous
procedure touches or crosses the parabola P, . somewhere
outside of the range [¢_,q.]. In such a case, one would need
to generalize the approach described above to initial states
that follow thelr first-contact parabola over k several disjoint
intervals [¢”,¢"], i=1,... k. Starting with the case k=1
discussed above, one could add a new contact interval in a
series of steps, until the minimizing profile remains below
the first-contact parabola everywhere outside of the k contact
intervals. Note that this method also includes the case where
some intervals are reduced to a point, which corresponds to
the limit q(') (’)—>O Thus, this covers the case where the
parabola would only have two (or a few) isolated first-
contact points.
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Finally, we must specify the relation between the overden-
sity 7, and the Lagrangian coordinates g_ and ¢,. We must
separate the cases of large overdensities and underdensities
as

d d
7> 1: ﬂr=<&>, 7, <1 m=<£>- (156)

r r

Indeed, since we have a shock at radius r, with a finite mass
mhok o (g — g%, the density within radius r and the enclosed
mass are ambiguous. It is actually discontinuous at r, going
from m_ to m, with m,—m_=m*"*. This also means that the
minimum discussed above is unstable, in the sense that an
infinitesimal perturbation will move this mass inward or out-
ward, so that m(<r) goes to m_ or m,. Then, if we consider
rare and large overdensities, the probability P(7,) will be
governed by the initial conditions close to the previous mini-
mum such that m(<r)=m,, which leads to first Eq. (156).
Similarly, for extreme underdensities we obtain second Eq.
(156). Note that this also shows that the action S is not
regular at the minimum obtained above and going beyond
the leading term given by the exponential as in Eq. (148)
would require a careful analysis. However, this discontinuity
is not of the same kind as the one encountered for collision-
less gravitational collapse, associated with radial orbit insta-
bility and recalled in Sec. V A 1 above since by using Eq.
(156) we simply consider the left or right limit of S (with
respect to any degree of freedom) and not an isolated point
of zero measure.

4. Computation of the saddle point

In practice, it can be difficult to solve Eq. (150) for the
kernel f, and we did not obtain a general solution. However,
for power-law power spectra (6) with low integer values of n
and d, where the radial potential correlation Cy (q1,9>)
takes the simple forms given in Table I, it is possible to
derive explicit expressions for f(g) from Eq. (150). It is con-
venient to first write f(g) as a derivative,

M=% andglg)=ga)=0. (157
q

In the second equality we used Eq. (155), which yields
g(q.)=g(qg_), and the fact that g(q) being defined up to an
additive constant we can choose g(g_)=0. Next, substituting
into first Eq. (150), integrating by parts and derivating once,
we obtain

r—

q4+

q , Mol

-<q=<qs — =f dq'C, (9.9')g(q"), (158)
q_

where we used first relation (32). Then, we can devise a
systematic procedure to solve Eq. (158) when d—n is an odd
integer, that is for

d=n+1+2€ with{ e N. (159)

Indeed, from Eqgs. (32) and (27) we have, with a normaliza-
tion factor D,
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o

Cu, (q1.92) =Df dkk"®(q))Pi(q2)
0

(160)

where we introduced the eigenfunctions on [0, %[ of the
linear operator L,

Japn(kq)

q =0: (Dk(Q) = (kq)d/z_l 5

L O =k*D,, (161)

with

&P 1-dd d-1
St . (162)
dq qg dqg q

L=

On the other hand, we note from standard properties of
Bessel functions (i.e., Hankel transforms) that

f Ak D(q))Pi(q2) = 41 Sp(qr - q2).  (163)
0
Therefore, noting LT the adjoint of L,
> d-1d
L= (164)
dg q dq

we have when condition (159) is satisfied, for g_<g<gq,,

fq+d 'c, ( ’)(me rd—l_’_q')
N q'Cy (q.q q Dr

r—q'

9+ *
=f dCI'f dkk"®(q)[ L Dy(q")]g' ! +b.t.
q— 0

r—
= q +b.t.
t

(165)

where we used Egs. (161) and (163), and “b.t.” stands for
boundary terms at ¢’=¢. generated by the integrations by
parts over ¢’. Thus, we obtain the solution of Eq. (158) as

v d-1"—4
g(q) = LTq* IE-'-b't" (166)

where the boundary terms are of the Dirac type, such as
Sp(qg—qg-) and its derivatives, localized on the boundaries
q-. Using relation (159) this yields

n

glg) = % +b.t.

4
g(q) > q T t=1:

€=0:

(167)

Then, the kernel f(g) can be obtained from Eq. (157). How-
ever, from Eq. (149) we can see that g(q) directly gives the
velocity profile of the saddle point as

q+
uoff dq'C,, (q.9")8(q"), (168)
q

which follows linear slope (158) in the interval [g_,q.,],
while action (153) writes
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o, (4 _
S=ym+ %f dqg(q)—2. (169)
a t

Since second equality (157) has already fulfilled constraint
(155), associated with the minimization with respect to the
parabola height ¢, we only need to minimize S over ¢g_ and
q. to complete the derivation of the saddle point and of the
rare-event tails of the distribution P(7,) (after we check that
this minimum does not give rise to other shocks). In fact,
from Eq. (169), in the present case the analog of Egs. (99)
and (148) reads as

P(,) ~ e~ V20 hrdag(g) (gt (170)
Thus, for overdensities g, is defined as a function of 7, from
the first Eq. (156), and we only need to minimize S over ¢_
to determine the saddle point and high-density tail (170). For
underdensities ¢g_ is set by second Eq. (156) and we must
minimize S over ¢, to obtain the low-density tail.

Again, this approach only holds for the rare-event tails, in
both limits of large scale/early time at fixed density, and of
extreme density at fixed scale and time, where probability
(170) is much smaller than unity. In such regimes, expression
(170) gives the asymptotic tail of the probability distribution
at leading order.

5. Tails of the velocity divergence distribution

The method described in the previous section can also be
applied to the distribution of the velocity divergence, P(0,).
As for the quasilinear regime studied in Sec. IV B the only
difference as we go from the overdensity to the velocity di-
vergence is to replace 7, by ®, in the action S. In particular,
we recover the same saddle point and same rare-event tail
(170), and we only need to specify the relation between ©,
and the Lagrangian radii g_ and ¢,. Applying the discussion
below Eq. (156) to ©,, which is given by Eq. (104) for
regular points, we now write

0,>0: ®,=d(—q+—1>, (171)
r

0,<0: ,=d(—q‘—1>. (172)
r

This gives back relation (121) so that the tails of the distri-
bution P(®,) can again be obtained (at leading order) from
the tails of P(7,) by substituting second Eq. (121).

6. Case n=0,d=1: white-noise initial velocity
Let us describe how this procedure works for the case
{n=0,d=1} [whence £=0 in Eq. (159)], where the variance
O%L of the linear density contrast is actually divergent so that

shocks must always be taken into account. Using the initial
velocity correlation given in Table I, we immediately obtain
the solution of Eq. (158),

r—q
g-<qg<qy glgg=—, glg+)=0, (173)

t

which gives the linear velocity profile
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r—q
q € lg-.q.]: up,= o

q ¢ [9-.q.] 1o, =0.

(174)

Note that g(g) is singular (discontinuous) at g., since
g(g+)=0, which gives Dirac terms 5p(g—g-) for the kernel
f(g). Then, the action (169) writes

%

S=ym+ ?{[(q+—r)3+(r—q_)3]. (175)
For overdensities, 7,> 1, the upper boundary ¢, is given by
Eq. (156), ¢q,=rm,, whereas ¢_ is determined by minimizing
S. This gives g_=r, since g_>>r is excluded as it would give
further shocks over the range [r,g_]: we must check that the
profile ¢, does not cross the parabola P,. outside of
[g_.,q.], that is, that the velocity profile does not create a
larger shock. For simple profile (174) we do not need to
consider iy, to check that no shocks appear beyond [¢_,q.].
Thus, the system is motionless over [0, r{ and ]g,,+[, and
particles in the range ]r,q.[ have linear initial profile (174)
and simultaneously merge at radius r at time r. Note that
there appears a rarefaction interval (empty region) over
Ir.q.[ as the initial velocity is discontinuous at g,. This is
due to the large power at high k of initial white-noise energy
spectrum (11). We can see that there are no other shocks over
disjoint regions that modify the density within radius r at
time f, so that we have obtained the true minimum over
symmetric initial conditions. Then, Eq. (170) gives

7> 10 Play,) ~ e =160, (176)

For underdensities, we obtain by a similar reasoning ¢_
=rm,, q,=r, and

o <li P(y)~er - med), (177)

From Eq. (121) we obtain at once for the velocity divergence
0,, which is also dimensionless velocity increment (22), the
tails

P(O,) ~ 016, (178)
Since the case {n=0,d=1} of white-noise one-dimensional
initial velocity can actually be solved [15,30], we can com-
pare results (176) and (177) with the exact distribution
P(7,). Using the notations of [30], it is known to display the
asymptotic behaviors at large scales,

Xs>1, |g-1l=x" 5>x3 Py

—o1X|m,~1-X3| 5, - 1\3/12’

(179)

~e
and at small scales,
X<1, 7,5X" Py)~eaXnX712 (180

where we did not write power-law prefactors, and —w; is the
zero of the Airy function Ai(x) closest to the origin (w,
=2.338). Here X is the dimensionless length of the interval
[-r,r] of radius r, whence of size x=2r,
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¥ 2r 2r h X 7
= = s ence — =—,
(2D (43 12 67

(181)

since the normalization used in the present paper corre-
sponds to D=2 [61]. Thus, we can check that for large over-
densities our saddle-point result (176) agrees with exact re-
sults (179) and (180) at leading order, at both large and small
scales. Of course, this only applies to the rare-event tail,
which is repelled to larger densities, 7,5 1/X, at small scales
in the highly nonlinear regime. For large underdensities, we
also recover exact result (179) at leading order, which ap-
plies to large scales. It cannot give the low-density tail in the
highly nonlinear regime because this no longer corresponds
to rare events. Indeed, as described in [30], at low densities
the distribution P(7,) shows an inverse square root tail,
«1/\7,, and a Dirac contribution, 8,(7,), that both have a
weight, of order e‘“’lX‘X3/ 12 gt large scales, which becomes of
order unity at small scales. In fact, on small scales most cells
of radius r are actually empty so that there no longer exists a
rare-underdensities tail. Note that this feature can actually be
seen on saddle-point result (177), as we can see that for r
< 1?3 the exponential becomes of order unity for 7,=0. This
shows that empty or almost empty regions are no longer rare,
and that the distribution P(7,) over this range cannot be
obtained by a saddle-point approach of the type described in
this article.

Finally, it is interesting to note that Eq. (176) agrees with
the behavior that would be obtained by a naive extension of
Eq. (133) to {n=0,d=1}, even though the derivation of Eq.
(132) does not apply to this case (the variance 0% is even
divergent). On the other hand, for underdensities éq. (134)
would give In P(7,) ~—t"2r35,— 0 for 7,— 0. This shows at
once that this cannot give the low-density part of the prob-
ability distribution since we do not find a rare-event tail
[In P(7,) -~—o] but a probability of order unity, which a
saddle-point approach cannot describe. As discussed above,
this is not a failure of Eq. (134) since there is no rare low-
density tail as empty regions occur with a finite probability,
which goes to unity at small scales.

Of course, the discussion above also applies to the distri-
bution P(0,). Thus, tail (178) agrees with the exact result for
large positive O, in all regimes, and for negative 0, in the
quasilinear regime, while on small scales, in the highly non-
linear regime, cells with ®,=-1 (associated with almost
empty domains) are no longer rare and cannot be described
by the method used here. Again, scalings obtained in expo-
nential (178) agree with a naive extension of Eq. (135) while
the extension of Eq. (137) correctly signals the absence of
rare low-0, tail.

7. Case n=0,d=3

We now consider the case {n=0,d=3}, which gives {=1
in Eq. (159). From Eq. (167) the regular part of g(g) is pro-
portional to r/t, and we find for the solution of Eq. (158)
with the normalization of Cu,, given in Table I,
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rqy —

2r  rq_ 2 36]3_
= g - )+ " 5)(q - q.).
g(q) YRy p(g—q-) + ” (g —q.)

(182)
Here the Dirac terms should be understood as &plg

—(g+ ¥ e)] with e—0" (i.e., they have an integral weight of
unity within [¢_,q,]). This gives the linear velocity profile

. q(r-q.) _ r-4q
q<q_ Uy= 7. . q€lgq.d: Uog = P
2
q.(r-q.)
q>q.: ”0q:+T2+’ (183)

and the action

o2
Yo,
S=yn,+ 6_;2)(4”2% - 6rqgr + 3q?r -r’q). (184)

For overdensities, 7,>1, the minimization over g_ gives
q_=q,. Indeed, contrary to the previous case, {n=0,d=1}, it
is now possible to have g_>r without building a larger
shock, as already seen from Fig. 2, since we actually recover
the saddle point of Sec. V A without shocks, as ¢g_=¢, (i.e.,
an isolated contact point between the parabola P, .(g) and
3, 1/6 1/2\2 2
to,)- Then, Eq. (170) writes as P(,) ~e™ 7 ~7 70 in
agreement with Eq. (100) and Table V and we recover tail
(132) and Table VIII. Indeed, the constraint in Eq. (132) is
satisfied so that we already knew that we had to recover that
regular saddle point.

For underdensities, 7,.<<1, the minimization over g, gives
q.=2r/3 so that we only have a shock (i.e., g_<gq,) for g_
<2r/3, that is for low densities below 7,=(2/3). This
agrees with the discussion in Sec. IV A2 and Table III,
where we found that regular saddle point (76) only develops
a shock after a finite time, which is below a nonzero density
contrast threshold. In the quasilinear limit, /2> 1, where
the range 7, <,<1 already corresponds to large density
fluctuations, we can also use the method described in Sec. IV
and we obtain the result of Table V. The analysis described
above from action (184) provides the density threshold 7,
=(2/3)3 written in that table. From relation (121), this also
gives the velocity divergence threshold ®,=-1, above which
the quasilinear distribution P(®,) is given by Table VIL

For larger underdensities, 0 < 7,<7,, we have q_<gq,
and we must use action (184) that takes shocks into account
since we can check that profile (183) is valid (there are no
other shocks that modify the density within radius r). Then,
Eq. (170) gives

r3<8
0< 7.<(2/3% InP(n)~-—|==n")
7y ( ) n (7]r) 6[2 9 7,

(185)

Of course, we can check that at point 7,=7, Eq. (185) is
equal to result (100), shown in Table V, which is provided by
the regular saddle point. We can see that below this threshold
the dependence on 7, of P(7,) is modified by shocks. Thus,
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Eq. (185) provides the very low density tail of P(7,) in the
quasilinear limit, 3/£2> 1.

In the nonlinear regime, /1?2 <1, result (185) becomes of
order unity over the range 0= 7,<#,. Note that this agrees
with the naive extension of Eq. (134), which also yields the
correct exponents of r,t and #,. Then, as for the case {n
=0,d=1} studied in Sec. V B 6, there is no rare underdensi-
ties tail, and empty or almost empty regions are not rare.
More precisely, there is no exponential decay of P(7,) at low
71,, but power-law prefactors associated with subleading or-
der terms may give either a power-law growth or falloff at
n,— —d. However, the precise behavior of the distribution
P(7,) for 17,=0 cannot be derived through a saddle-point
method since there is no rare tail and one should take into
account many possible initial configurations.

The previous results directly extend to the distribution
P(0,). Thus, for large ®, we recover the saddle point of Sec.
V A and tail (135), which applies to both quasi-linear and
highly nonlinear regimes. For low 0,, Eq. (185) gives

-3<0,<-1: hPO®)~—|= . (186
, nP(0,) 152\ 3O (186)

Again, this provides the very low-0, tail in the quasilinear
regime, which disappears in the highly nonlinear regime
where there is no longer a rare-event low-0, tail, and this
behavior can also be seen in the naive extension of Eq. (137).

8. Case n=-1,d=2

We now turn to the case {n=-1,d=2}. As seen from
Table VIII, shocks should only appear for underdensities, as
in the previous case {n=0,d=3}. The extension of Eq. (134)
gives a vanishing power of 7, so we can expect a logarithmic
dependence on 7, (or a finite asymptote) for In P(7,) at low
densities. We again have €=1 in Eq. (159), so that the regu-
lar part of g(g) is obtained from Eq. (167) as «r/(tg), and we
find

r r r—2q,
=—+—0p(g—q_)+ oplg — , (187
g(q) 2ig (g —q-) Y n(q—q.), (187)
and
q(r—q.) r—q
q<gq. Hog ="~ q €lg-q.l: up,= pt
e

q>4q,: Mof%qqn, (188)

while the action writes

02% 9+ 2
S=yn+—\ P In = +27—4rq, +2q5|. (189)
q-

47
As expected, for overdensities we recover ¢g_=q, (i.e., the
regular saddle point without shock) and P(7,)
~ e (=1%27) in agreement with Eq. (100) and Table V
and we also recover tail (132) and Table VIII.

For underdensities we obtain ¢,=r/2, so that we only
have a shock below 7,=1/4, which provides the density
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threshold written in Table V. Thus, as for the case {n=0,d
=3} and in agreement with Sec. IV A 2, in the quasilinear
regime for rare underdensities in the range 7, <7,<1 the
distribution P(7,) is obtained from the method described in
Sec. IV, which gives the result of Table V. In terms of the
velocity divergence 0,, this also provides the threshold O,
=—1 of Table VII and above this threshold the distribution
P(0,) is given by Eq. (119) and Table VII in the quasilinear
limit.

For lower densities, in the range 0<7,<7,, we obtain
from Eq. (189)

2
0< 5,< 1/4: lnP(n,)~—é[l—ln(4n,)], (190)

whence P(7,) ~ (d7,)"/BDe 131 (191)

Again, at the transition 7,= 7, Eq. (190) is equal to Eq. (100)
shown in Table V. Thus, we obtain as expected a logarithmic
dependence over 7, for InP(7,), in agreement with Eg.
(134). In the quasilinear regime, r>/t*>> 1, Eq. (191) means
that the low-density tail has a power-law behavior P(7,)
~ 7% with an exponent a~7r?/(8?) that grows at large
scales and early times so that the low-density falloff is in-
creasingly sharp. However, because there could be a power-
law prefactor in Eq. (191) due to subleading corrections to
the steepest-descent approximations, this is unlikely to give
the exact exponent « but only its behavior at large r and
small 7. Then, in the nonlinear regime, r*/#><1, Eq. (191) is
not sufficient to give the behavior of P(7,) for 7,—0, as
these prefactors may either give a positive or negative expo-
nent. This limiting configuration between the cases n>-1,
where empty or almost empty regions have a finite probabil-
ity at small scales, and n <—1, where low densities exhibit an
exponential tail of form (134), requires a finer analysis in the
nonlinear regime.

For large velocity divergence ®, we recover tail (135)
associated with the regular saddle point while for low O,
Egs. (190) and (121) yield

-2<0,<-1: InP@O, ~ y[l -2In(2+0,)],

(192)

whence P(0,) ~ (2 + ('*),)’2/ (42 g=r21(8%), (193)

This only gives the behavior at low ©, in the quasilinear
regime, r>/t>> 1, as in the nonlinear regime power-law pref-
actors may lead either to a growth or decay of P(@,), but in
both cases there is no rare-event tail (i.e., no exponential
falloff).

9. Summary for low integer n and d

We summarize in Table IX the results obtained from the
approach developed in the previous sections for the tails of
the distributions P(7,) and P(0,), for the initial conditions
of Table I where shocks cannot be neglected. This comple-
ments the Table VIII that applies to cases where the saddle
point does not form shocks.
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TABLE IX. The tails of the distributions P(7,) and P(®,) for the initial conditions of Table I, in cases where shocks appear. These results
also hold for the quasilinear limit, 7— 0 or r— o, at fixed #, or ®,, but only below the thresholds given in this table for the last two rows
(higher densities and velocity divergences are described by Tables V and VIII). For {n=0,d=1}, these results hold in the quasi linear limit
for any 7,# 1 and ®,# 0. In the highly nonlinear limit, r— 0 or t— o0, the rare-event tails at low 7, and ©, disappear as low densities and
velocity divergences are no longer rare (In P in this table becomes of order unity and these formulae are no longer valid). Cases marked as

“no shock”™ correspond to saddle points that do not give rise to shocks so that the results of Tables V, VII, and VIII are valid.

n d In P(7,) for 5,>1 In P(n,) for ,<1 In P(@,) for ©,>0 In P(0,) for ©,<0
) 2 3 K
o _13 ——(1=- 3 __®3 ___@3
0 1 o2 =D o2 =™ P o2 @)
3 3 (1
0 3 No shock _r_2(§_ 7;1“) for 1],<E No shock r—2<—+®,) for ©, < -1
61°\9 2 181°\3
r 1 r
-1 2 No shock - g[l —In(47,)] for 5, < 1 No shock - g[l -2In(2+0,)] for ®, < -1

These rare-event tails apply to the large fluctuation limits,
7,— and 7,— 0, or ®,— and ©,— —d, at fixed time and
scale, whatever the value of the variance a%u or o‘z%r.

They also apply to the quasilinear limit, 0'5“—>0 or oy
—0, that is at early times or large scales, at fixed 7, and O,,
below some finite thresholds 7, and ®, in the two cases
{n=0,d=3} and {n=-1,d=2}, and for any 7,#1 and O,
#0 in the case {n=0,d=1}.

For these three cases, in the highly nonlinear regime, r
—0 or t— o, the rare-event tail at low 7, and O, disappears
as these results predict that In P becomes of order unity.
Then, low densities and velocity divergences are no longer
rare (but the probability distribution might still decay as a
power law) and cannot be described by a saddle-point ap-
proach.

C. Mass function of point-like singularities

As the density and velocity fields evolve through the non-
linear Burgers dynamics, starting from scale-free initial con-
ditions (6), the system displays an intricate self-similar pro-
gression from smaller to larger scales. In particular,
collisions between particles create discontinuities (shocks) of
dimension d-1, d-2,..., down to 0, lower-dimensional ob-
jects arising at the intersection of higher-dimension struc-
tures. For instance, if d=3, once particles have formed a
two-dimensional sheet of finite surface density, orthogonal to
the direction of the largest eigenvalue of the initial tidal ten-
sor, they keep moving within this surface and form critical
lines and nodes. Then, the typical distance between such ob-
jects increases as L(z), as in Eq. (44), and their mass grows
accordingly. The mass and the overdensity within radius r
about a point x, contained in such a D-dimensional structure,
scale as

r—0: m(<r)~ P, (194)
= m(=1) _ pa (195)
poV

Thus, at small scales we can see that very large densities are
associated with the lowest-dimension objects, D=0, and the

contribution of these pointlike masses to the probability dis-
tribution P(7,) reads as

r—0, mn,—% P(n)dn,~ Valm)dm, (196)

where V is the volume of the sphere of radius r and n(m) is
the mass function of pointlike masses, that is, n(m)dmdx is
the mean number of such objects of 0 dimension, with a
mass in the range [m,m+dm], within the volume element
dx. Then, from Eq. (133) we obtain for the high-mass tail

(n+3)/d
m
)] - "

m — 0!

(197)

Indeed, we have seen in Sec. V B that scaling (133), which
was derived in Sec. V A 1 for n<d-3, actually extends to
the full range —3 <n <1, but the proportionality factor is no
longer set by Eq. (132). However, in the range n<d-3, this
numerical factor is given by Eq. (132), while for d—3<n
<1 it can be obtained from the analysis described in Sec.
V B, and from Table IX for the associated integer values n
=0 and d=1. We show our results in Table X for the high-
mass tail of the mass function n(m) of pointlike objects, for
the initial conditions of Table I.

Of course, as for the density and velocity distributions,
these results agree with the exact expressions that can be
obtained in the two cases {n=0, d=1} and {n=-2,
d=1}[14-18,29,30] For more general cases, scaling (197)
was already conjectured in [11,14], from numerical simula-

TABLE X. Large-mass tail of the mass function n(m) of point-
like objects, for the initial conditions of Table I, from Eq. (196).

n d In[n(m)] for m—
0 1 -m?/(482p)

0 3 —3m/ (8> py)
-1 2 —m/ (271 py)

-2 1 —m/ (4£2py)

-2 3

5
~ A lmi (4mpy) )13
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tions and heuristic arguments, and proved in [19] for —1
<n<1 with d=1 (with upper and lower bounds for the pro-
portionality factor).

D. Preshock singularities

Before we conclude, we should add a few comments on
the comparison of this work with studies of preshock singu-
larities [3]. As shown in [57], for smooth initial conditions
large densities are localized near “kurtoparabolic” singulari-
ties residing on space-time manifolds of codimension two.
They lead to universal density tails (7))~ 77"? in any di-
mension. In one dimension, this corresponds to pre-shocks
[58,59], that is, when a shock forms the Lagrangian potential
changes from a single extremum to three extrema and at the
transition, where its second derivative vanishes, one can see
through a Taylor expansion that the Eulerian density field
behaves as x~%3 close to the singularity. Then, the contribu-
tion from the neighborhood of such events (both in space and
time) yields a power-law tail () ~ %77/2. This can also be
extended to higher dimensions [3,57]. These results apply to
the unsmoothed density field for smooth initial conditions.
By contrast, in the present article we study the smoothed
density and velocity fields, that is we always consider the
mean density and velocity increment over a finite radius r,
for nonsmooth initial conditions described by power-law
power spectra (18). Thus, these are two very different re-
gimes. In particular, this explains why we obtain probability
distributions that depend on both the dimension d and the
slope n of the initial power spectrum (over the range —3
<n<1), rather than universal tails. We can note from Eq.
(133) that in the regime studied here the probability distribu-
tion P(7,) shows a large-density exponential tail with a char-
acteristic cutoff 7,~ r~¢ that goes to infinity as r— 0. Then,
at very small scales (i.e., in the highly nonlinear regime) an
intermediate power-law regime can develop below this upper
cutoff. However, this power law is not universal either since
the exact results obtained in [18,30] show that for d=1 we
have P(7,)~ 77;3/2 if n=-2, see also Eq. (103), and P(7,)
~ 7];1/2 if n=0.

We can note that for the forced Burgers equation similar
universal power-law tails can be obtained using instanton
methods (i.e., looking for relevant saddle points that corre-
spond to shocks) [52], although there is some debate on the
exact value of the exponent, which might depend on the
influence of the boundary conditions [59,60]. Again, these
results consider a smooth forcing so that the exponent is set
by the dynamics of a single shock and is universal. For sin-
gular forcing (i.e., with significant power at high wave num-
bers) one might obtain nonuniversal results for the density
and velocity increments over finite radius r, in a fashion
similar to the free case studied here. However, this goes be-
yond the scope of this article.

VI. CONCLUSION

We have studied in this article some asymptotic properties
of decaying Burgers turbulence in d dimensions. Focussing
on the case of random Gaussian initial velocities and a uni-
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form initial density, we considered power-law initial energy
spectra such that the evolution is self-similar. Thus, the sys-
tem displays a hierarchical evolution and the integral scale of
turbulence, L(z), that is generated by the Burgers dynamics
and separates the large-scale quasilinear regime from the
small-scale highly nonlinear regime, grows with time as a
power law, L() > *"*3_Then, in order to take advantage of
the statistical homogeneity and isotropy of the system (once
we have taken care of the infrared divergence if n<-1), we
have defined the spherical quantities, 7, and ®,, that are the
overdensity and the velocity increment over a sphere of ra-
dius r. This allows to preserve the statistical isotropy of the
problem and to handle the case of large dimensions d> 1.

We have first recalled how such a nonlinear dynamics can
be studied through standard perturbative expansions. Here
this corresponds to expansions over powers of time, or
equivalently over powers of the initial velocity fluctuations.
This approach is quite flexible, as it does not require any
symmetry, but it becomes very heavy at high orders. It can
be somewhat simplified when one focusses on spherically
symmetric quantities such as #, and ©,, defined through a
real-space top-hat filter, but it remains cumbersome for arbi-
trary dimensions. We have pointed out that from a perturba-
tive point of view the Burgers dynamics in the inviscid limit
is equivalent to the Zeldovich dynamics. This means that
shocks are not taken into account and require nonperturba-
tive methods.

Next, we have described how to derive the asymptotic
probability distributions P(7,) and P(®,) reached in the qua-
silinear regime from a saddle-point approximation. This
method allows to obtain at once the asymptotic cumulant
generating function ¢(y), the Taylor expansion of which pro-
vides the leading-order term for each cumulant (7)., which
would be obtained from the previous perturbative expansion
truncated at order p—1. In addition, the generating function
¢(y) being obtained directly trough a steepest-descent com-
putation, one can go beyond its apparent singularities (asso-
ciated with large high-order cumulants and slowly decaying
tails for the probability distributions) and make sense of pos-
sible secondary branches, which are found when this func-
tion appears to be multivalued. This approach takes advan-
tage of the spherical symmetry of the observables #», and O,
to reduce the problem to a one-dimensional system, as the
relevant saddle point (instanton) is also spherically symmet-
ric. This allows to derive simple results for arbitrary dimen-
sion d, provided this instanton has not formed shocks yet.

Then, from the radial profile of this saddle point, we have
found that these results only apply to the range of initial
energy spectrum index -3<n<d-3 (within -3<n<1),
and only above a nonzero underdensity if -2 <n<d-3. For
n=d-2 the quasilinear regime does not really exist. More
precisely, the overdensity and velocity divergence 7, and ©,
are already divergent at linear order and their distributions do
not converge towards a Gaussian at early time or large scale,
in spite of the Gaussianity of the initial conditions. Thus, the
system is always dominated by shocks. For d-3<n<d-2
the linear theory is well defined so that one recovers Gauss-
ian distributions at very early times or large scales, but the
saddle point forms shocks as soon as #>0. Then, the quali-
tative results obtained from this steepest-descent approach
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should remain valid and still provide a reasonable quantita-
tive approximation, as shocks appear over a limited range of
radii, but they are expected to be modified by prefactors of
order unity.

Thus, in order to describe the cases d—3<<n<1, as well
as very large underdensities for -2 <n=<d-3, it is necessary
to take into account shocks. We have shown how to modify
this saddle-point method, taking advantage of the geometri-
cal interpretation of the Hopf-Cole solution in terms of first-
contact paraboloids, to handle these cases. This allows us to
find out the instantons, which contain shocks, that provide
the leading-order behavior of the rare-event tails of P(7,)
and P(0,). Focussing on some low integer values of n and d,
where simple explicit results can be derived, we have ob-
tained the asymptotic tails of these probability distributions,
at any finite time and scale, for the cases {n,d}
={0,1},{0,3}, and {-1,2}. We note that the scalings actually
agree with a naive extension of those obtained from the regu-
lar saddle-point computation. This also gives the high-mass
tail of the mass function of pointlike singularities (i.e., Dirac
peaks in the density field, which correspond to shock
strengths in the one-dimensional case).

Then, we find that for n<-1 the very low density tail
. (n+1)/2
shows an exponential cutoff of the form e~ , whereas

for n>—1 there is no exponential falloff (but there could be
a power-law decline). For the latter cases, in the quasilinear
regime, this part of the probability distribution P(7,) corre-
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sponds to extremely rare underdensities and has a negligible
weight, and around moderate fluctuations, |7,—1|<1, the
distribution shows a falloff on both sides of the mean (7,)
=1. In the highly nonlinear regime, this intermediate low-
density regime disappears and low-density (and empty) re-
gions are no longer rare. Then, one needs another method to
describe the low-density part of the probability distribution
at small scales.

Throughout this article, we have checked that our results
agree with the two one-dimensional cases of white-noise ini-
tial velocity (n=0) and Brownian initial velocity (n=-2),
where many exact results are known, thanks to the Markov-
ian properties shared by both cases, which allow a derivation
of explicit formulae through specific methods. Note that
these two cases are representative of the two classes of initial
conditions, —1 <n <1 and -3 <n<-1, where the initial ve-
locity is dominated by small/long wavelengths and which
exhibit the different behaviors discussed above. Hence they
provide a good check of the general methods presented in
this article. In addition to the interest of the asymptotic be-
haviors obtained here, we can hope that they could serve as a
benchmark to test other approximation schemes, devised to
study additional quantities such as typical events. Moreover,
since the approach developed in this paper is rather
general—for instance it was already applied to the gravita-
tional dynamics—it may also prove useful for other systems.
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